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1, INTRODUCTION

The first document of this report, "Summary Report, >’ li§ts and briefly
describes various forms of the equations of motion and the stz'lbility criteria
for predicting the stability characteristics of an elastic airplane and gives
results of their application. This appendix is intended to give detailed

developments and discussions of the material summarized in that document.

In dealing with the stability and control of elastic airplanes the engineer is
confronted with three distinet problems:

(@ Equilibrium of steady-reference-state* flight conditions;
() Stability of steady-reference-state flight conditions;

(c) Response of the airplane to control and/or gust inputs and the

behavior during unsteady maneuvers.

As specified in NASA Contract NAS 2-3662, no gust inputs will be considered.
Also, since unaccelerated (interpreted as approximately constant speed) flight is
the object of the study, no truly unsteady maneuver will be considered.

Therefore, for the purpose of this report, problem c is defined as: response

of the airplane to small control inputs.

Other fundamental restrictions that apply to this contract are: .

\

(2) Only free-flight conditions will be investigated (no takeoff, landing, or
ground eftect).

{(b) No thermoelastic effects will be considered.
(c) No electromagnetic effects will be considered.

Any solution of problemsa, b, and ¢ will require the definition of the shape
of the deformed airplane. This implies that even in steady-reference-state
gituations the equations of motion must be coupled with the state of internal

equilibrium,

To describe the forc .s acting on the elastic airplane it is necessary to know

the shape of the deformed airplane. Two possibilities present themselves:

*Steady state is defined as that state for which no state variables change with

time, with respect to a body-~fixed axis system.
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a) The airplane shape is defined in some reference flight condition. This
could be a midcruise condition, where the airplane shape is defined to

obtain a given lift-to~drag ratio,

b) The airplance shape is defined in the jig (jig shape). In this condition it
is generally assumed that the structure is continuously supported

(unloaded state, no internal stresses).

To compute the stabiiity and control characteristics of the elastic airplane
for all flight conditions it is necessary to know its jig shape. In case bithere is
no problem, In case althe jig shape must be determined first by carrying out a

so-called inverse aeroelastic solution.

With this background in mind, a detailed development is presented of the
equations of motion for maneuvers of elastic airplanes during unaccelerated
flight, After presenting the derivation of the general equations of motion for an”
airplane, these equalions are simplified and expanded into forms used in the
solution of the following problems:

(a) Equilibrium of steady-state flight conditions;
(b) Stability of steady-state flight conditions;

(c) Response of the airplane to smail contrcl inputs,
These equations are applicable to large, flexible supersonic airplanes that may

operate in a flight regime extending to Mach 5 at 30 000 meters altitude,

Emphasis has been placed on retention of as much generality as possible in
the equations of motion, As the equations have been expanded into forms that
allow the solution of specific problems, the assumptions and approximations
made in so doing have been carefully stated. In the text each assumption is
identified in the margin by the letter G, A, S, or D, followed by a number, For
easy reference in reading the text all assumptions are summarized in Sec. 3.

Static and dynamic stability criteria are derived for an elastic airplane.
In their mathematical formulation these criteria are the same for either elastic
or rigid airplanes. The meanings of stability, stability criteria, and associated
concepts are defined,

Dynamic r cability criteria are developed with four methods:

() Characteristic equations methods;



() Time history method;
(c) Energy decay method;
(d Lyapunov method.

The Lyapunov method was included to cover the case of nonlinear and/or

nonautonomous equations of motion.



2. SYMBOLS

This list includes the symbols found in the Summory and appendixes. In different
technologies some of the symbols have different meanings. For example, € means downwash
angle to an aerody namicist, but strain to a structural engincer. In these cages the severul
definitions have been listed after the symboi. )

General
AR Aspect ratio, nondimensional
[A]) Steady aerodyvnamic influence coefficients matrix, meters=/radian
a . A . . ﬂ,
[6A] Unsteady aerodynamic influence coetficients matrix, meter—-seconds/

radian
[All , [AL], [AQ], Aerodynamic matrices, newtons, newton-meters

a Root of characteristic equation, second™!: lift curve slope, radian”|

a, Speed of sound, meters/second

Ev Vertical tail elastic to rigid lift ratio, nondimensional

a Acceieration, meters/secondz

b Wingspan, meters

Cy, Cycles to damp to half amphtude, nondimensional

C2 Cycles to double amplitude, nondimensional

Cp Drag coefficient, D /GS, nondimensional

CDi Induced drag coefficient, Di /'q'S, nondimensional

CL Lift coefficient, L /qS, nondimensional

Cl Rolling moment coefficient, Mx/aSb, nondimensional



Chn Pitching moment coefficient, My /@S¢, nondimensional

CN Normal pressure force coefficient, N 138, nondimensional
%

Cn. Yawing moment coefficient, MZ/Z';Sb, nondimensional

Cp Pressure coefficient, (P - Pm)/i,;o, nondimensional

Cr Thrust coefficient, T /S, nondimensional

Cy. Cy Side force coefficient, Fy /4S, nondimensional

[C] Flexibility matrix with reference point fixed, meters/newton

[Col Flexibility matrix with reference point fixed and with reference
point rows and columns removed, meters/newton

[C] Flexibility matrix with reference point free, meters/newton

[ER] Residual flexibility matrix, meters/newton

c Wing chord, meters

cR Root chord, meters

< Mean aerodynamic chord, meters

Cref T for the 707 and cp for the SST, meters

D Drag, newtons

D; lndu_ced drag, newtous

(D] Transformation matrix from fluid to stability axis system,
nondimensional

4 Elastic displacement, meters

{di } Column matrix of elastic displacement components at the ith
element, meters

{dp} Matrix of elastic displacement peiturbation, meters

L Total airplane perturbation encrgy, newton-meters: Young’s modulus,

newtons/meter~; induced drag efficiency Factor, nondimensional;
cnergy, newton-meters



oS

{r}
{Fa}
'I'Fd]

{Fr}
g

Gw

orf

Internal energy der sity, newton-metﬁrs“]kilogmm
Energy decay parameter, nondimensional

*
Force, newtons; surface stress vector, newtons/ metx}l’2
Total force matrix, newtons

Aerodynamic force matrix. newtons

Flexibility matrix relating changes in panel centroid deflections to
unit loads, metersfnewton

Generalized forces at ith element, arbitrary dimensions
Thrust force matiix, newtons ..
Flexibility matrix relating panel slopes to unit loads, radiansfnewton

Aeradynamic influence coefficients (subscnic), newtonsfradian

Perturbation force, newtons; perturbation surface stress vector,
newtonsimeter?-

Perturbation force matrix, newtons
Aerodynamic perturbation force maftrix, newtons
Thrust perturbation foree matrix, newtors

-

Shear modulus, newtons[xm:ter2

.Gross weight, newtons

Structural influence functions in diadic form with reference point
free, meters3/new:on

Aerodynamic influence coefficients (supersonic), newtons/radian
Acceleration due to gravity, mete:rs/second2
Unit base vecto nondimensional

Altitude, meters; specific o ~y, pewton-meters/kilogram: center-
ofsgravity posit. .n,r. . * ol
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lyy-lyz lpz

(y, £
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i,j,k

Kpw)
K\;/(B)
(K]

Maneuver point position, nondimensional

Neutral point position, nondimensional

Static margin, nondimensioual

Velocity of panel normal to the streamwise direction, meters/second

Moments and products of inertia, kilogram~meters2

Identity matrix, nondimensional
Horizontal tail deflection, degrees

Unit base vectors, nondimensional

Torsional constant, meters4/radiun

Angular deflection at the exposed horizontal tail due to a unit load
at the tail, radians/newton

Structural stiffness coefticient, newtons/meter

Ratio of aircralt nose lift to aircraft wing lift, nondimensional

Effective change in vertical tail angle of sideslip due to a unit change

in rolling acceleration_ measured at the exposed vertical tail, degrees/
. g)

radian/second~

Effective change in vertical tail angle of sideslip due to a unit change

in yawing acceleration measured at the exposed vertical tail, degrees/

rznlian/second2

Effective change in vertical tail angle of sideslip due to a unit change

in side acceleration measured at the exposed vertical tail, degrees/

meter/second2

Effect of lift carryover on the body due to the wing, nondimensional

Effect of lift carryover on the wing due to the body, nondimensional

Stiffness mat {x with respect to fixed reference point, newtons/meter



(K]

IK)

(M]
[M]

ml,mz,m3

=1

Element stiffness matrix, newtons/meter
Stiffness matrix with respect to tree reference point, newtons/meter

Generalized stiffness matrix with free reference point, newtons/
meter

Thermal conductivity, newton-meters/second-meter-degrees Celsius:
. “ . .
clastic constant, newtons/meter=; Strouhal number, nondimensional

Corrector matrix for influence coefficients, nondimensional
Lift, newtons

Moment arm, meters; characteristic length, meturs; pressure difference
» d
across surface, newtons/meter-

Wing c,¢/4 to horizontal tail co¢/4, meters
Wing c.¢/4 to vertical tail cref/4, meters
Direction cosines, nondimensional

Mach number, nondimensional; mass of the airplane, kilograms
Moment, meter-newtons

Inertial matrix, kilograms, kilogram-meters:
Generalized mass mafrix, kilograms

Direction cosines, nondimensional
Perturbation moment, meter-newtons

Mass matrix, kilograms

Diagonal mass matrix, kilograms

Yawing moment, meter-newtons

Normal force, newtons

Load factor, nondimensional; number of elastically connected mass
elements used to represent the airplane, nondimensional



p.q,r

=]

£L>

Direction cosines of the normal surface, nondimensional
Unit vector normal to the surface, nondimensional

4
Diagonal matrix o f panel unit normal vectors, nondimensional

Period, seconds

Components of the angular velocity @ in the body axis system, radians/
second

2
Total vressure, newtons/meter~
Aerodyramic panel pressure forces, newtons
. 2 .
Static pressure, newtons/meter=; roll rate, radians/second
=

Perturbation components of angular velocity ¥y in the body axis
system, radians/second

Generalized force, arbitrary dimensions ™

Matrix of generalized aerodynamic and thrust forces, arbitrary
dimensions*

Pitch rate, radians/second; rate of internal heat energy addition, newton-
meters/second

Generalized coordinates, arbitrary dimensions™®
Dynamic pressure, newtons/ meterZ

. n . .
Pitch rate, qe(/2V, l,nondlmensxonal

Matrix of generalized coordinates, arbitrary dimensions*

Matrix of generalized coordinates of elastic free vibration, arbitrary
dimensions*®

Cantilever eignvectors, nondimensional

*The units of a generalized force times the generalized coordinates must be newton-meters.

(
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Universal gas constant, newton-meters,/Kilogram-degrees Kelvin;
magnitude of position vector, meters: region of XY plane not covered
by the airplane or wake, nondimensional

Reynolds number, nondimensional

Position vector at an initial instant of time, meters; body force per
unit volume, newtonsf meter3

Reference distance, meters; magnitude of the position vector, meters

Yaw rate component, rbIZVC‘ , hondimensional

Position vector relative to the body axis system, meters; position
vector relative to the flutd axis system, meters

Position vector of the center of gravity relative to the fluid axis
system, meters

Position vector relative to the stability axis system, meters
Position vector relative to inertial space, meters

Position vector of the center of gravity relative to the inertial space,
meters

Position vector in the undeformed airplanc relative to the body axis
system, meters

Matrix of airplane position and orientation perturbations, meters,
radians

. a1 .
Reference area, meters=; airplane’s projection on the XY plane,
nondimensional

Diagonal matrix of panel areas, metersl

Complex frequency function, 1/seconds

Kinetic energy, newton-meters; thrust, newtons; time, seconds
Time to damp to '2 amplitude, seconds

Time to double the amplitude, seconds



AT,

-1/,

t*

}

<t <

<}

(¢

v,

w

Rolling convergence mode root, 1/seconds
Spiral mode root, 1/seconds

Time, seconds; airfoil thickness, meters
Nondimensionalizing time factor, seconds

Potential energy, newton-meters

Components of velocity VC in the body axis system, meters/second

Perturbation components of the velocity in the body axis system,
metersfsecond

Generalized coordinates, nondimensional

Forward velocity component, u/Vcl, nondimensional
Generalized eisstic displacements, meters

Lyapunov function, nondimensional; volume, metersS
Equivalent airspeed, meters/second

Velocity vector of the airplane center of gravity, meters/second

Velocity vector, meters/second

Perturbation velocity vector of the airplane center of gravity
meters/second

Matrix of airplane linear and rotational rate perturbations, meters/
second, radians/second

Matrix of airplgne linear and rotational acceleration perturbations,
. p)
meters/second =, radians/second

Weight, newtons; airplane’s wake projection on the XY plane,
nondimensional

Matrix of panel centroid distances to the reference point, meters

Body-fixed-axis system (app. A); fluid axis system (app. B)

11
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(A, .8 YB: Zp: Body-fixed-axis system

Xg. ¥B- 2B
Xy Yo' Z, Axis system fixed to a material point
XY’z Earth-fixed-axis system
xhy'z!
Y Side force, newtons
tayl Matrix of spanwise panel widths, meters
Zp Vertical displacement of structural reference point, meters
{Z} Matrix of vertical displacements of each panel from equilibrium,
meters
{1 Square matrix
{ } Column matrix
L Row matrix
(S Z
FJ Diagonal matrix
( ]T,{ 3 Transposed matrix
[ ]'l Matrix inverse
Il ]“ Determinant of a matrix
{al All zero elements
{1} Column matrix of ones
i “Jump”’ in enclosed quantity
Greek Symbols
o Angle of attack, radians
ap Angular rotation of structural reference point, radians
Qpaf Angle between X body axis and Vcl , radians T
{o} Matrix of panel slopes, radians



Angle of sideslip, radians
2 : o
(M~ - 1), nondimensional
, . )
Circulation, meters=/second
Structural influence functions with reference point fixed in diadic

form, meters3/ncwton

Flight path angle, radians; ratio of specific heats for air,
nondimensional

Finite change in some parameter, nondimensional

Control surface deflection, radians; arbitrurily small number, non-
dimensional; Dirac’s function, nondimensional; thickness ratio,

nondimensiona!

Matrix ot displacements relative to a space-fixed inertial system,
meiers

Matrix of flexible displicements relative to the structural axis system,
meters

Downwash angle, radians; arbitrarily small number, nondimensional;
strain, meters/meter

Change in downwash angle at the stabilizer per unit change in wing
angle of attack, 9¢ /0« radians/radian

Damping ratio, nondimensional; nondimensionalized coordinate,
nondimensional; dummy variable, nondimensional

Efficiency factor, nondimensional; coordinate, nondimensional;
dummy variable, nondimensional

Euler angle, radians

Perturbed Euler angle, radians
Streamwise rotation of panel, radians
Node rotations, radians

Rate of change of Euler angle, radians/second

13
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)

[®n]

i

Rotational rate of paneled airplane about axis of rotation, radians/
second )

Rigid-body rotation about center of gravity, radians
Angle mode matrix, radians/meter
Eigenvalue, nondimensional; taper ratio, nondimensional; bulk

3 )
modulus, newtons/meter=; Lame’s constant, newtons/meter=; sweep
angle, degrees

Roots of characteristic equation, 1/seconds

Reduced mass parameter, nondimensional; Lame’s constant, newtons/
9 .. . . .
meter—; extent of influence region, nondimensional

Cantilever mode shape matrix, nondimensional

Matrix of all cantilever modes, nondimensional

Poisson’s ratio, nondimensional

Coordinatces, nondimensional; dummy variables, nondimensional
Constant, 3.14159. . ., nondimensional

Density, ki!ograms/metc.'r?’

2] . . . .
Normal stress, newtons/meter—; density ratio, nondimensional; real
root of characteristic equation, 1/seconds

Rotation of structural reterence axis system, radians
Rectilinear translation of structural reference axis svstem, meters

Cocfficient of viscosity, kilograms/meter-second; shear stress,
7. . .
newtons/meter=; time, nondimensional

. . o .
Total velocity potential, meters=/second; Euler angle, radians

Nc ‘malized natural free vibration modes of the airplane, nondimensional



Subscripts

A

Perturbation velocity potential, meters; perturbed Euler angle radians
Rate of change of Euler angle, radians/second
Frec-vibration mode shape matrix, nondimensional
Rigid-body mode shape matrix, nondimensional

Stress diadic, newtons/ meter>

Normal mode of gencralized coordinate, nondimensional
Velocity potential. nondimensional

Arbitrary positive function of time, arbitrary dimension
Euler angle, radians

Perturbed Euler angle, radians

Rate of change of Euler angle, radians/second

Inertia diadic

Phase angle, radians

Fiequency, radians/second; imaginary part of a pair of complex roots,
1 /seconds

Undamped natura! frequency, radians/second

Perturbed angular velocity, radians/sccond

Acrodynamic: airplane; aileron
Acrodynamic
Acrodynamic center

Body reference axis system

15



oo Center of gravity

op Center of pressure

D Dutch roll mode

F Equivalent elastic (Formulation 11); elevator

E Equivalent elastic (Formulation I)

Eff Effective

EqEl Equivalent elastic

exp Experimental

F Flutter

HB Handbook methods

h, ht Horizontal tail
C‘ Inertia relief

2 Lower surface

L.E.,LE Leading edge

Is Lifting surface theory method

P Phugoid mode

R Rigid; rudder

r Rolling convergence root mode

S Spiral root

sp Short pcri;d

5 Stability axis system; spiral mode



s

u
v, vert, V.T.
w

WB

WBT

wT

Sea level

Tip; total

Upper surface

Vertical tail

Wing

Wing-body

Wing-body-iail

Wind tunnel

Ata=dg =iy, = 09 initial state

Steady state motion variables; trimmed condition

Undisturbed condition

17



3. ASSUMPTIONS

vt

.Assumptions used in developing the equations and methods are listed here for
reference. Where appropriate in the swmmary rmeport, pertinent assumptions used in
obtaining a result or equation are given. However, discussions of the assumptions as they
come into the developments are given in the appendixes. Further descriptions and
justifications are included in those discussions.



General Assumptions

6161601616161018I60I016)

Airplane mass and mass distribution are constant with time
k3

No thermoelastic effects considered

No electromagnetic effects considered

Symmetric airplance

Variation of air density witn altitude is negligible

No gust effects considered

Gravitational forces on the field are negligible

Small perturbation theory

Large perturbation theory

Origin of coordinate system is at the center of mass

Arbitrary perturbations

Aerodynamic Assumptions

(%]

@EOOOOEE®G

Potential flow theory

Thin bociy

Slender body

High aspect ratio

Prandtl boundary layer approximation

Perfect gas, thermally nonconducting and chemically nonreacting
Isentropic flow

Stecady flow

19
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alelelelolelo,

Unsteady flow

Inviscid flow

Quasi-steady flow

Aerodynamic influence coefficients for nonzero sideslip
Continuum flow

No finite shock waves

Velocity field is irrotational

Structural Assumptions

174
=)

OO @O®OEA®OOV

Hooke’s law applics

Only small strain and displacement gradiceats are considered
Structural damping is negligible

Structural perturbations can be represented by normal modes
Completely elastic math model of elastic airplanc

Residual elastic math model of elastic airplanc

Equivalent elastic math model of elastic airplane

Rigid math modcl of clastic airplan.

Airplane displacement vector field is such that the center ol gravity
does not displace or rotate

X component of clastic deflcction is negligible
Y component of clastic deflection is negligil'e
Tne structure can be adequately represented with beams

Inertia of cach finite mass clement about its center of gravity is
negligible



Dynamic Assumptions

PEOEREERG®EG

s
=

EEEG®G

Free flight only

No spinning rotors
Steady-state curvilinear flight
Steady-state rotation is small
Zero-lag thrust derivatives
CL";' is negligible

Cy[-,l, CYf' ,Cy vl, and C“i; are negligible

1 I

Cp is negligible

q
Steady-state rectilincar motion
Stick-fixed-and-unaugmented airplanc
Thrust perturbation forcees are negligible
Steady state, wings level, and zero sideslip
Level flight (steady state)
Linear acrodynamic stability derivatives

Two-degree-olf-freedom longitudinal motion

21
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4, GENERAL EQUATIONS OF MOTION FOR AN ELASTIC AIRPLANE

4,1 Introduction
4
In formulating the general equations of motion for an elastic airplane under

i;he ground rules of NASA Contract NAS 2-3662, the following restrictions
apply:
¢ No gust effects are considered.

e Only free-flight conditions are considered (no takeoff, landing, or
ground effect),

® No electromagnetic effects are considered.
e No thermoelastic effects are considered.

The flight domain of validity of the equations of motion will be pointed out
as the analysis proceeds, but will never be less extensive than the one shown
in fig. 1.

Restrictions (G6), (D1), and (G3) are clear; however, (G2) deserves some
comment, In aercelastic problems it is common to assume that changes in
strain distribution have a negligible effect on the temperature distribution and
the temperature magnitude. However, changes in temperature distribution
and magnitude may have significant effects on the strain distribution, In light
of this, restriction (G2) is interpreted to mean that the temperature distribu-
tion and temperature magnitude are known,

In fig, 2 the airplane is shown aé a three-dimensional elastic body that
is unrestrained in space. An inertial, rectangular cartesian coordinate
system (X', Y', Z'") is used to describe the motion of the airplane relative to
the earth. The airplane is assumed to consist of n finite mass elements,
each connected to (X', Y', Z') by a position vector T'. The n mass
elements are connected with each other through the elastic properties of the
airplane structure. A mathematical description of this structural connection
is given later,

Assumption@n no way restricts the validity of the analysis until a
numerical value is associated with n, This will be done in most practical
situations and leads to the familiar lumped mass representation of the air-
plane, whereby it is recognized that not all masses are necessarily structural,
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FIGURE 2. ~ ELASTIC AIRPLANE AXES



For the time being, n is assumed to be indefinitely large so that the analysis
remains general and the equations can be maintained in the integral form,

A reference point P is selected in the airplane, and the ¢rigin of an
orthogonal coordinate system (X, Y, Z) is fixed to this point, The origin at
P is located in inertial space by the vector i“\o'. - The mass elements of the
elastic airplane are located with respect to P by the vector T . The
following relation is now implied:

¥ =7 + F @a.1)
Three components, each representing a translational degree of freedom, are
required to define fo' completely, To define the orientation of (X, Y, 2)
relative to (X', Y', Z") three orientation angles are required; each angle
represents an angular degree of freedom, To locate n mass elements whose
positions relative to P are defined by T ; 3n components are required;
since the components are measured relative to P , however, there are
(3n - 3) translational (elastic) degrees of freedom. To define the orientation
of each mass element inside (X, Y, Z) requires (3n - 3) additional degrees of
freedom, and this completes the description. In total, then, the elastic
airplane when represented by n finite mass elements (very large n ) has
6n degrees of freedom. For a rigid airplane the position and orientation of

the n finite mass points remain constant in (X, Y, Z).

The first six degrees of freedom are analogous to conventional rigid-
airplane degrees of freedom., The remaining (6n - 6) degrees of freedom are
the elastic degrees of freedom. A total of 6n equations are needed to
describe the motion of an elastic airplane, Fortunately, there are practical
ways to reduce this large number of equations without significantly affecting
the solutions to the equations of motion, It may be noted in the following
discussion that when n is allowed to increase without bound ard the airplane
is represented as a continuum, the rotational degrees of freedom of the mass
points are no longer distinguishable, In fact, the concept of elastic degrees
of freedom is questionable in a continuous representation,
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4,2 Equations of Motion for the Rigid Degrees of Freedom

The six rigid degrees of freedom are described by force and moment
equations in accordance with the laws of conservation of lineay and angular
momentum, These equations in vector form are:

d dv’ = [ R4V + | F ds 4.2
dtvﬁ‘dt dVv J;Rdv LFd (4.2)

d [ xpdfav = [#xRav +f?"xf:“ds @.3)
dt Jy dt -V s

The symbol ‘R\ is defined as the body force per unit volume and is used here
to represent gravity through the relation:

R = Pa § (4.9

The symbol T is defined as the surface force per unit area and represents
both aerodynamic and reactive (thrust) forces. The density per unit volume

of the elastic airplane is represented by §p N The sum of the mass elements
represented by the integral of P AdV is assumed to be constant with time,
This yields:

M Jr L. dV , M = constant (4. 5)
v

Thus the airplane mass M is constant with time, The mass distribution is
also assumed to be constant with time, Hence, assumption @ also implies
that fuel slosh is not accounted for,

It is convenient to define P as being always at the center of mass of
the airplane. This implies that:

E' = -K‘-"——'[V/OA F'dV (4. 6)

Assumption in no way restricts the validity of the analysis, but simplifies
the equations of motion,

Even though P is always taken as the center of mass, it is not always
associated with the same material point on the airplane, The consequences
of this fact in defining elastic deformations are discussed in par, 4,4,



Because of equation (4, 1), equation (4,6) implies that:

[¥adv=o0 4.
v ‘ ]

Equations (4.4) and (4. 7) allow simplification of equation (4.2) as follows:

d 147 d =~
MZF("’E)“MT(W Mg + /F"’S (4.)

Substituting equations (4,1) and (4.4) into eguation (4. 3) yields, after some
rearrangement:

d . v -~

— | X = FadV = r XFdS (4.9)
dt d <

These results are algebraically identical to those commonly obtained for the

equations of motion of a rigid airplane,

Equations (4.8) and (4.9) describe the gross motion of the elastic airplane,
In particular, equation (4, 8) states that the center of mass P follows the law
of motion for a single mass particle equal to the total mass of the elastic
airplane and under the action of the resultant of all forces, Equation (4.9)
states that the rate of change of moment of momentum about P is equal to
the resultant moment about P

However, F and depend on the shape of the elastic alrplane and are
therefore functions of the elastic degrees of freedom, (Just how Foand T
are related to the elastic degrees of freedom is the subject of later discussion.)
Notice that in equation (4. 8) the elastic properties of the airplane enter only
into the right-hand side, In equation (4,9) the elastic properties appear to
enter the left-hand side as well as the right-hand side, since ’F is a position
vector inside the elastic airplane, How this affects the equations of motion
will be come clear later,

Equations (4. 8) and (4,9) say nothing about the internal equilibrium of
the airplane structure and are therefore not sufficient to describe the motion
of the elastic airplane, Information on the remaining (6n - 6) elastic
(structural) degrees of freedom must be obtained by examining the internal
equilibrivm equations for an elastic airplane.

2



4,3 The Internal Equilibrium for an Elastic Airplane

P Y
Assume that the force vector F (aerodynamic and reactive) for an

elastic airplane may be written in (X, Y, Z) as follows: 4
- - ,.l_ -t
F=Fxi+ Fyg +Fak (.19

At the surface of the elastic airplane the components of T are related to the
internal stresses by the boundary conditions:

-

Fx = 6xn-¢ + TxyR+j + Txzh-k

— - o e 4,11

b

— b e -L--.\ P S
Feo = T3 N +'I’gyn-J + gz N kK

where T is 2 unit vector normal to the surface and is positive outward, The
scalar products are the components of T and are the direction cosines
defined by:

a4

= cos(x,N )

30

cos (¥,R) @. 12)

i

3} S
x} Q..!,
i

(= 5N (Z) ﬁ)

The stress quantities ¢ and T represent the nine components of the stress
tensor % . In diadic notation, equations (4,11) may be written:

g . bl

F=n-: 95 (4. 13)
where & stands for the stress  asor (second crder),

L
A convenient way to look at ¢ is in matrix form:

6y Tue Txs

[3}"" Tvx oy Ty
Tax Tay o%

(4. 14)



Equation (4. 13) then becomes a matrix equation:

(7} =[] {n} (415)

where {n} represents the three components of % .

The equations of motion (4,2) and (4, 3) are also applicable to consider-
ation of the interior of the elastic airplane, However, the local (interior)
surface stresses are represented by expression (4.13). Therefore,
equation (4.2) in terms of the stress tensor yields:

x

dt ———~dV fRdV Pfh?ds (4.16)@

Likewise, this yields for equation (4. 3):

/"'x&dt,_ dV fr'x?a'dv +L?'x(ﬁ‘qhd5

-t

With 1‘ '= ry + , the equation reduces to:

2 'y - ~ s
fﬁxﬂg—ﬁdv ferdV +frx(n~¢3)d5 (4.17
v v S

The surface integral in equation (4.16) may be transformed into a volume

f’ﬁ-gbds» = [T §av
S

\'%

integral by:

accorcing to the Divergence Theorem, Similarly in equation (4.17):

[#x(ig)as = - [(RE)xPas == [G(FxF)av

Equations (4.16) and (4.17) may now be written as:

j [p" dta - R “'(:6'95)]::!\/ =0 (4.18)
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and

L[Fx&%m - ?X-& + $~(5x ?)] d\/.‘?: @) .(4.19)

These equations are satisfied when theintegrandsare zero; therefore, the

equations of internal equilibrium for an elastic airplane are:

2, - -t W
/Af}‘:“:"ﬁ--ﬁ“ vg = o (4.20)
-t a’s:—h’ - - hiioed 2 -~
FXpm 35 ~FxREB +V(2xF)=o0 (4.21)

The next task is to expand these equations into component form.
Introducing

g7 - - e
g2 T @xt * &y *t Ik 4.22)

and

B e

F=ﬂ£ S/A(ix? *j)y? +j§2} (4.23)
it follows, after substitution into equation (4.20), that

/2% 3x T 3y T S5 Toagx

. 2% 20 22y
= SXT Sy N BEE gy (*.29

_ 22%x S Bzy 20z
/82= By Ty T 5w t/ugs

The result of expanding equation (4,21) and using equation (4. 20) is:

Zex, Zhe = Zar (4. 25)

L]

- -"!" o) -
dxy T Cyx, CAm =
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This means that the stress tensor & is symmetric (ref, 8).

Equations (4. 24) and (4. 25) are not sufficient to describe fully the state of
internal equilibrium of the elastic airplane. The connection b,?tween stresses
and strains, as well as compatibility between strains and displacements,is
iacking. Assuming that the strains and displacement gradients are small, the @
strains can be wri .en in terms of displacements (app. B):

Y78 ov o w-
Ex = Iy% Ey= 3y » &= % 3%
ox ? oY L (4.26)
S du _Sw | du _ Qw , du
'Y"Ya}—;""é"?a Ve = X ¥ Q& 1 Yva ov B o2

where u, v, and w are components of elastic deformations along (X, Y, Z).
A relationship between stresses and strains for homogeneous, isotropie, -~

elastic bodies at constant temperature may be written as:
|
ex =g [ox =7 (o +ou)]

Ey ’““é_ [ov =7 (0% + az) ] (4.27)@

52"";:— [G'i S (s O’Y”

E

)
Txz , "7’vz=—G*TYz S sz

o |
%Y:ETXY,VXZ=?

Hooke's law has been introduced simultaneously with the assumption of
small displacements, This, coupled with the assumption of small strains
and displacement gradients, has considerable significance on the interpreta-
tion of equations (4,24) and (4.25), Those equations were developed from
consideration of equilibrium of a deformed body; thus, the point where stress
is evaluated in those equations differs from the point where strains are
evaluated by the elastic displacement, The change in coordinates is taken
to have negligible effect on the values of the stresses or strains; these are

the usual approximations made in the classical theory of elasticity (ref, 8).
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Equations (4.24), (4.25), (4.26), and (4,27 form a sufficient basis to
determine the forces and displacements in the elastic airplane as functions
of time, Just how these equations can be cast in a form useful in analyzing
stability problems of elastic airplanes is the subject of par, 4f4, where the
concept of influence coefficients is introduced, This concept is shown to be
a direct consequence of assumptions@and@, provided no local structural
instability (buckling) occurs,

4,4 The Internal Equilibrium Equations
Using Influence Coefficients

Assumptions@ and @restrict the validity of the analysis up to this
point to cases with small strains and perfect elastic behavior (i. e. linear
stress-strain hehavior). This is justified because the strains are actually
sm.all in the safe operating range (from a structural viewpoint) of large
elastic airplanes, It follows, therefore, that linear relations exist between
forces and deflections., Moreover, from the "perfect elastic" assumption@,
it follows that when external forces are removed the structure assumes its
initial form, To illustrate the physical significaiice of this, consider the

following example.
The linear relation between force and deformation can be written as:
d=CF (4.29%)
where d is a deflection, F is a force along d , and C is a constant of

proportionality that will be called an influence coefficient, Figure 3 illustrates

the meaning of equation (4.28).

FIGURE 3. — LINEAR FORCE-DEFORMATION RELATION



In a more general sense it is possible to write equation (4.28) in diadic
form:

_—

=0

=l
-

(4.29)
This type of formulation of elastic deformations is extensively discussed in
ref, 42,

In this case C is a second-order tensor, the components of which are
called influence coefficients, In the more familiar matrix form, the com~

ponents of T 2 colated to the components of 7 by:

{di} :[c:‘J]{FL'} j 13213; - :R (4. 30)

nn

The physical significance of the elements of matrix [Cij] can be readily
deduced from equation (4.30).

The introduction of the concept of influence coefficients represents no
new assumptions or restrictions of the derivation. The influence coefficient

concept is an antomatic result of assumptions @and@made in par, 4.3,

Even though local strains are assumed to be small (assumption @, a
deflection of the structure can still be large. This is a well-known fact;
typical airplane examples are the wings on Boeing models B-47, B-52, and
707.

In airplane ;structures, elastic Buckling (nonlinear relation between di
and Fi) can occur even when local strains are small, In such cases it is
theoretically possible to rewrite equation (4. 30) in a nonlinear form by
allowing [Cij} to vary with di’ or to apply equation (4. 30) locally, thereby
constantly re-evaluating Ci‘ . The consequence of such buckling on stability
analyses is not considered in this report,

The concept of influence coefficients may be used to modify equations
(4.24) through (4.27) and bring them into a more useful form, To do this,
it is first necessary to express these equations in terms of displacements
u, v, and w rather than in terms of stresses, This may be done by
inverting equations (4,27):
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- ou . v, dur u
O = }‘(ax T oy T oz ) + 26 ox,
= A[2Y% , Sv  dw v (4.31)
0y = A(ax MY +az)+2'6 3Y
= (Y% 4 O¥ , dw Sw
o, = A(ax + £ +az)+ 26 £
where
v E
A (l+"l/)(l—2.7}) 4.32)
and
ou  au
Txy = G(;;(“ + 3?)
ow | Sv (4.33)
Tyz = 6(57 + 5—2—)
sz = G("aé‘zg +gi;")

For more detailed discussions on these equations, see ref, 26.
Substituting equations (4.31) through (4. 33) into equation (4, 24) yields:

azu azlf a?.w =2 ~
(x+ G)(ax= T axey T axaz) FEVIUT g SAA

o%u Qw 3% Se — 4,34
(A+G)(aan + 5y tavez)t OV v HAagy = Paay (39

3w 0%~ __aaw‘ =2 -
(7"“6)(axaz+a~raz aZ"-)+va+’%9a Fale

These are recognizable as Navier's equations, They are adjoined by a set of
boundary equations (conditions) that relate the surface traction T to the



surface displacements, These boundary conditions follow by substitution of
equations (4.31) through (4. 33) into equation (4.11):

Fx=AAn-{ +G|2<-n-¢ + (S0 2207 + (2% + 24 R
Fx=2 ¢ (ax+av)“J +<az+a )” K

| ¢
R IR T A T AT
= AR 2 Q0 R 4 (27 L 2R T (2, v o
Fy=2A J +G 3 n +( +aY>n‘+(,9Y +ai)n :\ (4. 35)
o

— o B A Jw‘ QV’A‘.’“ au aw-\.,\.
oA AR+ 6o (274 2 o (25, 2udis
- ) J oz Tax /™t

where

24, 3¢ o Ser kD
A= IX oY oF (4.36)

Equations (4. 34) may be written in vector form after introducing:

a‘7= a(?. "'ﬁ*arz 4.37
This yields Navier's equations:
(A+@)V(P-I) *@VT +B =2 & (4.38)

where

aA= a displacement

ﬁ = a body force (gravity)
U

a

= an acceleration

Equation (4, 38) can be written in symbolic form as follows;

B el = () (4.39)

where £ is now defined as a differential operator given by:

£ =-[14+8)6rAD DIV + @ V2] (4. 40)

-~ Ld

It is now feasible to think of a new operator & -1 , inverse of £, which
has e nrene -ty such that:

T =X (B 5) (4.41)
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The attractive feature of this inverse operator is that it allows a symbolic
explicit solution for ?1'\ that represents the deformed shape of the elastic
airplane as a function of (X, Y, Z). In addition, it allows the introduction of
the influence coefficient function concept as a further gexleralfzation of
équation (4.30), This is done by expressing ,,2' -1 in integral form as:

~n

EC) = LTt It ot (4.42)

| =N
where T is a second-order influence coefficient function tensor, defined in
matrix form by:

Cualx 522, §) Coloyzé 78) CealiyzEn$S)
7= CwlxyzinS)  Owloyzenl) Crlyzinf) (.49
Cax(x,%2:6,22,8)  Cevlny,z:8%,8) Castoyms 2,6

Applying the Betti reciprocal theorem (ref, 8), it is feind that the tensor
is symmetric:

>

Cer= Cyx Cuz =C’ex‘ vz = Czy (4.449)

The f(;llowing physical interpretation can be given to Crs' For example,
the function Cy (X, Y, Z; £, 1m , £ ) stands for the displacement of the
structure in the X—direction at point (X, Y, Z) due to a unit load in the
Y-direction at point (£,7,¢). These influence coefficient functions can
actually be computed or determined experimentally when there are a finite

number of points (X, Y, Z). A detailed discussion is found in ref, 26,
The solution for the elastic deformation vector a‘ can now be written as:
e [
& =L/70 Joadfanas (4.45)

where the parentheses contain the applied forces. Equation (4.45) may be
written in terms of the inertial and body.forces as well as the forces at the
boundary. Thus the surface force T should be added to (ﬁ\ - Pﬁ\) at the
surface, By introducting the concept of Dirac's function it is ﬁossible to
write equation (4, 38) as

d ’f{f"'(R'FAa)dgdndg +f,P'FS(r- re)dEdnaf  (4.46)



-~ . X . =2, .
where 6(r-r s) is Dirac's function, The vector ry isa position vector
PR, .
at the surface, Dirac's function 6( r~ r S) is defined as follows:

*
‘e

£3(X,Y.E) §(r-¥s)dV =0 For r % rg
Lotxxz) o(F ~Bav= [qlxvz)ds for r=t
(4.47)

The airplane is unrestrained; hence the boundary conditions for the
structures problem are entirely in terms of forces, There are no displace-
ment boundary conditions specified in the nsual sense, i,e. that kinematically
constrain the airplane. The surface aerodynamic forces obviously depend on
the displacements, but this dependence is of little assistance in the derivation
of the influence coefficient tensor T' . As noted in the discussion on
equation (4.43), the elements of T give the components of displacement at
X, Y, and Z due to unit components of forceat £ , 7, £ ., To carry out the
computation of these elements determinantly, some point (the reference point)
is held fixed, However, this is not consistent with the unrestrained airplane,
since in that case the reference point does not remain fixed,

The influence function tensor T = .fo is computed with the airplane
clamped at a reference point in the jig shape . The airplane jig shape is
defined as the completely unloaded shape, i.e. without aerodynamic or
gravitational loading, A jig shape coordinate system is selected as
(Xo, Yo’ Zo) with origin at P o0 which is the reference point and is also the
material point that represents the center of gravity (c.g.) of the jig shape,
The geometric relation between coordinate systems (X, Y, Z) and (X o’ Y o’ Zo)
is presented in fig, 4. The center of mass of the jig shape and the center of
mass of the deformed shape are coincident in fig, 4 as seen by an observer
in X', Y', 2'). The reason for this is obvious: the center of mass does not
change its position in space when an equilibrium loading system is taken away
from the airplane, In fig, 4, then, P is both the center of mass of the jig
shape and the center of mass of the deformed shape, whereas P o is the
material point in the deformed shape that becomes P in the jig shape,
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FIGURE 4. - AXIS SYSTEMS FOR THE DEFORMED SHAPE AND THE UNDEFORMED SHAPE

OF AN ELASTIC AIRPLANE

A consequence of the computation of 'f relative to (X o Y o’ Zo) is that
a transformation must be made in equation (4,46):

- ' = -

= L (S xa = 4,48
dX.Y,,z, = dyyze —do -~ z(VXcl)o X r ( )

Applying the transformation equation (4.48) to equation (4,46) yields:

& ) e :: - i - .u - - -
- - - = . - o€ r’; . -~ Y.
d-d,~3(Vxd) X¥ xr; (R-p3)dv fv Fs(F-ra)dv 0. 49
This equation defines the elastic deformation 3 in X, Y, Z) but allows Fo

to be specified in Xy Yy 2) 80 that it becomes a unique propei‘ty of the
structure rather than a function of the flight condition,



4,5 Summary and Interpretation of General
Elastic Airplane Equations of Motion

The general equations of motion of an elastic airplane as derived in the
previous sections may be summarized as follows;

L) - - .
”ar?/c?{‘)““”ﬁ(%)—*#& » [ Fuos (4. 8)
e aE e CF o B (4. 9)
dody - £ (O xZ) x Fe § 7 (B-pn 2) i+ [ 7 -FEF=E)et

(4. 49)

All equations are written relative to an earth-fixed coordinate system
X', Y', Z"), which is assumed to be inertial, The motion vectoy 7‘\6
describes the motion of the center of mass of the elastic airplane, The defor-
mation vectors —; and d are defined relative to a body-fixed axis system
(X, Y, Z) with origin at the center of mass of the elastic airplane,

A complete list of assminptions on which equations (4.8), (4.9), and (4.49)
are based is given below:
o No gust effects are considered, (Strictly speaking, this is not true @
at this point because _P.A‘ could contain forcing functions if desired.)

® Only free-flight conditions are considered. (No takeoff, landing, or
ground effect,)

® No electromagnetic effects are considered, @
e No thermoelastic effects are considered, @

e The airplane consists of n finite mass points, where n is to be
large if accurate approximations to continuous solutions are desired,

e Airplane mass is constant with time, and no fuel slosh is accounted for
s The origin of system (X, Y, Z) is at the center of mass,

e Strains and displacement gradients are small, @
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2 o Hoc aw is valid and displacements are small,

¢ Structural damping is negligible,

Coupling between elasgsio and rigid degrees of freedom erit.'ers the equations
through the vectors _? and \f‘\ » Where 'ﬁ , In general, is a function of "f".
From an analytical viewpoinx\, the problem of describing the static and dynamic
behavior of the elastic airplane is now solved, From the stability and control
engineer's viewpoint, this is only the beginning,

The vector quantity ‘GAo may be introduced to represent the rolation of
(Xo, Yo’ Zo) relative to (X, Y, Z):

G =Erox Il (. 50)

Equation (4.49) describes the elastic desplacement field at the surface of
the airplane. With this substitution, equation (4.49) becomes:

Liad hhs beid [ o= o - i e e
oo - B XF = LI -fz?;/%a).-zv-f-f,,/gﬂf‘é‘fr—fs)dy 4.51)

4,6 Use and Specialization of the General Equations of Motion

Equations (4. 8), (4.9), and (4.49) will be specialized to steady-state flight
equations, The determination of motion variables and airplane shape in steady~
state flight is needed to solve most dynamic stability and control problems,

As will be shown in Sec. 6, whei‘e the equatious are speceialized to form
stability (perturbed motion) equations, the steady-state motion variables,
inertial properties, and shape enter into the stability equations, making it
necessary first to establish the steady state completely.

Solutions to the force equations can be obtained by adding to —I"\ the control
deflections or other forcing functions, For linear equations, it is then possible
to obtain explicit solutions by means of Laplace transforms, Nonlinear equations
can be solved numerically,



5. STEADY-STAT: EQUATIONS OF MOTION

5.1 Introduction and Deflinitions

The purpose of this section is to present equations from \‘:'hich the
équilibrium of steady-statce flight can be determined, This determination is
needed because the perturbed equations of motion, developed in Sec, 4, are so
written that the perturbatlons take place about the steady-state condition,

Several of lhe steady-state characteristics such as inertis , deformations, and

H

aerodynamic forces affect the perturbed state, and knowledge of these steady-
state quantities is thérefoce required.

Steady-state flight is defined as a flight condition for which all maotion
variables remain constant with time relative to a body fixed ax1s Sy stem. The
three vectors defining the elastic airplane flight condition are V o w » and d R
the velocity of the center of mass, the angular velocity about the center of mass,
and the slastic deformation, respectively, This definition of steady-staie flight
implies that Vc, ) , and Ti\ are constant in time,

If the atmosphere is inhomogeneous because of variations with altitude,
steady-state fhght implies that V is horizontal, This follows kecause o will
change in time if V is not horizon*al thus the aerodynamic forces will change
in time, causing the deformed shape d to change, and so on, However, for
shallow flight path angles, p may be taken as a constant for reasonable lengths

of time, Hence assumption of constant air density p is introduced at this poiat.(A O

This assumption must not be made, however, without careful checking.

Steady-state flight also implies that @ is vertical (or approximately so
for shallow flight path angles); otherwise unsteady flight would result, However,
to include the important steady-state pullup maneuver in the equations (the
steady state refers here to speed only), an exception will be made,

Two important types cf steady-state flight must be considered: steady-state
rectilinear flight and steady~state curvilinear flight, Steady-state curvilinear
flight will be considered in two parts: steady~state (approximately level) turning
flight and steauy-state symmetrical pullup, The following assumptions apply to
these conditions:
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i)

o Steady-state rectilinear flight.
e € nt air density
. -
® "'c <t d constant
¢ W=0
e Steady-state curvilinear flight
e Constant air density
-) Y

) V‘3 and d constant

o T # 0 but constant

() Level turn. P 1= 0, Q1 and R1 constant
®) Pullup: P, =R, =0, Q, constant =
The subscript 1 is used from here on to indicate steady-state motion variables.

Equations for hoth types of steady-state flight are presented in pars. 5.2
and 5,3, In par. 5.4 the expressions for aerodynamic forces and moments are
developed in terms of steadv-state motion variables. Finally, in par. 5.5 the
practical problems that ~en be solved with the results of pars. 5.2 through 5.4
are discussed. A sum....., of assumptions is also provided in par. 5.5.

5.2 Steady-State Rectilinear Flight

For rectilinear flight, the conditions of steady rectilinear motion rmust be
applied to the equations of motion (4.- 8), (4.9), and (4.50). This yields:

My + SFdS =0
LPxFasS=o0 6.1)
G- do-Bux Fe L hor 25 +F) S
At this point it is necessary to expand equations {5. 1) into cartesian form.
They are expanded one by one below.

5.2, . Momentum equation. —The momentum equation for steady-state
rectilinear flight is:




A5 +SFSS= o (6. 2)

The expansion of this equation will allow for shallow climbs and dives, with the
stipulation that assumption@(constant air density) is not groie,sly violated,

The components of '§;\ in the body axis system (X, Y, Z) can be identified
only if the orientation of (X, Y, Z) relative to the earth axis system (X', Y', Z"
is given (fig. 2). To do this the conventional system of Euler angles, ¥, g, ¢,
is used (fig. 5).

X'Y'Z Parallel to earth’s axes

;o\
6 “ : XYZ  Body-fixed axes
H \ Rotation sequence is
\ $.5.0
\
Z Zy 232'

FIGURE 5. — EULER ANGLES
It is readily seen that Mé"\can be resolved as follows:

M;“' = /E}x -f;fé, *E;a Y, 6.3

where:

fz = -9 s &

]

Gy = Feos& sin &, (5. 4)

"

Z ces O cos B,

=

43



44

-\
The force per unit area I consists of an aerodynamic component and a
thrust component, For convenience of notation, it is now defined that:

r'3
T

LFds = B +F (5.5)

- -
where F A and FT have the dimension of force, not force per unit area.

Using subscripts again to designate (X, Y, Z) comporents, equations (5. 2)

in steady-state notation are:

FZX‘ * ;;:Y: —/% s &y = O
F‘.’rx * /:;")’.e + /f’é9 Cos & sing; 2O (5. 6)

Fag, * Frg, +/?£9 Cos®; cos gy =0

5.2.2 Moment of momenium equation. — The moment of momentum

equation for steady-state rectilinear flight is:

S FxFodS = o 6.7)

by introducing
M =L F xFdS =M +Mr 5. 8)

it is easily seen that this equation, when written in component form, yields in

steady-state notation:

Iﬁd}, "‘MT,; =0 (5' 9)

MAzz + /arzl = 0

65.2.3 Internal equilibrium equation. — The equation for internal equilibrium

for steady-state rectilinear flight is:
-t ate - — = e P -
d-do-8.xX7 = L17 1pag +F/ S (6. 10)

This equation represents a solution in continuous form and is written in terms of
LY ’
the elastic deformation vector d. It is now necessary to specify the structural



Foawr”

——

properties represented by the influence function tensor I, in practical (state-
of-the~art) terms. To this end, the airplane is divided into a large number (n)
of pancls as in fig. 6. A control point is located on each pane{. The structural
properties are represented at each control point by a matrix of influence coef -
ficients [Cij] such as described in Sec, 6 and such that equation (5. 10) is
written in matrix form. Equation (5.10) must now be written in matrix form

because once a finite number is assigned to n , the integral formulation is no
longer meaningful,

rd

— Control points

FIGURE 6. - EXAMPLE OF A PANELED AIRPLANE

The use of structural influence coefficients is based on assumptions@ @
@ @. @ and@ In addition, an assumption must be made as to how the
structure itself is broken down. The various possibilities available to the

analyst are discussed in app. B. The mathematiczl form of the equation is not
affected by this choice.
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The general form of [Cij] relates the six degrees of freedom of each
control point to the six possible loads at each control point, namely, three locatl
moments and three local translational forces. The general foym of the load-
deflection relation in analogy to equation (5. 10) is as follows: ]

~ - N - -
2z, rdoz Gy B +Eoz 4 Czz Cyp Crz Coyx Coyz Coa= f%‘?::};gb"‘;;’?lo" +F 720 )

Ao’ oyt Goy Zp b2 Czy Cyy Cay Copy Coy y Loz y P8G50+ Aged F FTol
4 Az, d dop ¥ G0y Xi* 80y 4 [, Cra Cyz Czz Corz Coyzlesa ‘ P2 Pe0 *FR20, *( Tzl .
Ozos oz Cr6z Cy02Ca0 L0260, CororCozop Mz,
Oy Eoy Croy L4604 Croy Lox 0, Ceyoy Coz &y Myop
(G § L Sz J | Cre: o, C20,Coxc; (o468, Coz e Mz o¢ J
6. 11)

Note that i = 1, 2, ..., nin equation (5.11). A two-dimensional interpre-
tation of equation (5. 11) is provided in fig. 7. The transformation quantities
?i)o and —50 are cleurly indicated in fig. 7; it will be seen, however, that these
transformation quantities are not essential in a practical analysis,

Equation (5. 11) is the most ambitious static aeroelastic analysis that can be
undertaken in the current state of the art of structural analysis. Notice that each
element in the matrix ICij] is itself an (n x n) matrix. There are two reasons
why simplifications must be introduced:

¢ Aerodynamic theory has not reached the point where meaningful matrix

expressions can be generated for forces in the Y-direction. This is

further discussed in app. B.
e Computer time and space are limited.

It is generally assumed that the airplane does not deform significantly in the
X-direction or as a consequence of forces in the X-direction. This results in

zero matrices for all terms with subscript X in equation (5. 11).

Because of the state of the art of aerodynamic theory, no meaningful matrix

@ eqﬁations can be presented for steady-state deformations involving displacements
@ along Y. This results in zero matrices for all terms associated with displace-
12 ments with subscript Y in equation (5.11). Thus the following analysis is

- restricted to zero-sideslip conditions.
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@ Cantrol point panel,
deformed airplane '

@ Control point panei,
jig shape

All displacement quantities
are measured rel:ive to Xo¥oZo

FIGURE 7. — GEOMETRY OF PANEL DISPLACEMENT AND ROTATION

Furthermore, because of assumptions and@, it is not

necessary to carry influence coefficients involving 0y and OZ' This reduces

equation (5. 11), for practical purposes, to:
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Finally, it is generally assumed that {MYO} = 0, which really means that the
control points i are selected so that at no time does a moment My occur.
Equation (5. 12) therefore reduces to: .

{O/eo‘.} = (Q/oi, *6’0.9 2;-,’ {1} *‘[a{f@ ]{??Zja?of' “ao, *[;Eo"} (5. 13)

and

{9(0‘.} = Qas {1_;" f‘[c"?@ﬁ]f%yﬁ’ 2, *F@a;; 6. 14)

Note that the axis system used above is the body fixed axis system (Xo, Yo’ Zo).
Equation (5. 14) relates the streamwise elastic change of the angle of attack to
the forces applied normal to the XoYo plane.

Equations (5. 13) and (5. 14) represent the expanded form of the internal
equilibrium equation of an elastic airplane in steady-state rectilinear flight with
zero sideslip.

5.3 Steady-State Curvilinear Flight

For curvilinear flight, the conditions of steadyA curvilinear motion must be
applied to the equations of motion (4. 8), (4.9), and (4.50). Because the angular
velocity vector D is nonzero, complications arise in the expansion of the
equations of motion (4. 8), (4.9), and (4.50). The differential operator g—t( )
can be written in bedy axes as:

J?"f )""a—?( )+ ExE ) . 15)

where 9/t indicates a time differentiation with respect to body axes. Because
in steady-state flight 8/3t = 0, this yields: ‘

d o/;":' _ d o - e ot

E (%)= - o 6. 16
The momentum . _aation (4. 8) may now be written:

#a %G, = M o S .10



For the moment of momentum equation (4. 9), it follows that

,,é P d‘ ol [l
«? ‘,/fX Zij/f’;;dl/u [547)(/,‘;(2;'3 Ky (5. 18)

where steady~state notation is used, Employing equation (5. 16), equation (5. 18)

may be written:

-4

=
G L5kt xBopadV =SS xlE ) B9

where:

-
Ie' Ciy =fr;3 XCoy x T )on LV

so that -\i?l is the inertia tensor. In matrix form, the inertia tensor for a

symmetrical airplane is written:

Jzz, O [zw,
—
?f = o Ly O (5. 20)

Ire, ©  Iemy

The moment of momentum equation (5. 18) may now be written:

iy e
&y x 1Y -5,) = JFE xFids . 21)

The significance of the subscript 1 in the equation for the inertia tensor
(5. 20) is simply that its components are a function of the elastic equilibrium
shape of the airplane in the particular steady-state flight being considered.
This is a result different from rigid-airplane steady flight conditions. It is
found here that with elastic airplanes, the inertia tensor is a function of the
elastic properties of the airplane,

The equation of internal equilibrium at this time is best left in the form of
equation (4.50). Equations (5.17), (5.21), and (4.50) will now be expanded one
by one.
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5.3.1 Momentum equation, — The momentum equation fo.' steady-state

curvilinear flight is equation (5. 17):
M, x Vg = Mg+ LFeds * (5. 17)
w)
Allowing for shallow climbs and dives and using the Tg’\ and F of equations
(6. 4) and (5.5) yields in body axes:

M@ W; -2y V7 ) "/Wéy sl O = Fhaz, *Firz,
sl - Bw;) ~ Mg cos & sin gy = Fay, * Fiy, 6.32)

A /«/;?1/; "Qxl]p) "/{{j Cos ©1cos &y = Fax, *F7a

-

However, since stability axes will be used to describe the motion, W1 = 0. For
shallow climbs and dives, since the vector 'c31 is directed approximately
vertically, P = 0 so that equations (5. 22) reduce to:

/’ME;Z{) ""/@s{n ey = Faz, * fra,
(MR U, ) ~My cos 6rsingi = Fay, * Foys 6. 23)

/'M@Zb/*/%q coo. Qr CoS5 55,'—:;}:21 -~ Fr;_,

5.3.2 Momentum of momentum equation. — The momentum equation for

steady-state curvilinear flight is equation (5. 21):

D

St -t
&yx (%5 ) = L F xFr 'S 6. 21)

Expansion, using the steady-state notation and employing equation (5. 8),
yields:
-]22; ’?Qj * /[zz, ‘/,'yy,) ?10: =MAzl "M?‘z,
(Zezs ~Zea, )RR * [z2, (- = May, *Mry, (5. 24)
/fyyl’-/zzl) ;I‘DQI * [2'5‘5‘ /E}@’) = Mlqu-x +M7'£l



Using the shallow climb and dive condition P, = 0, equations (5. 25)

1
reduce to:

! /123,1"/_7;1:)/6?1@ =/f///?7..; * er! .

“lza, A= Mgy * M7y, 6. 25)

[2?‘ R@[ = /{742‘ *‘/ﬂfel

5. 3. 3 Internal equilibrium equation. — from equation (4. 50) the internal
equilibrium equation :or steady-state curvilinear flight is:

- -t - - vy 250, —~ e
& -do=3 (7 xdds XF = L7 (%625 +FJ)oS (5.26)

The acceleration & may be expanded as foliows, referring to fig. 4 and using
the steady-state condition 8/0t() = 0:
o de;é‘, d’/}b e ——tbe - ve
&= i+ o7 = oy XVag *cogx(éa, x ) 6.27)
The second term of equation (5.27) vanishes upon substitution into equation
(6. 26), as a consequence of the definition of the center of mass, The first term
-
of equation (5. 27) is nonzero. However, since '(31 =TQ1 + kR] because P1 =0
) - -\
and since Vg = iU + jV1 because of the use of stability axes (W1 = 0), equation
(0. 29) after expansion is:

a,z = -5
& = L 5. 28)

e = 'Q:U:

Since only a, is retained in the internal equilibrium equations (following the
development of par, 5.2, 3), it follows that these equations reduce to:

{dgol'} = Q/"e {}] "'[C'ez]{m';a’ *‘/:;”"4' * Fr&e" lalcc @t Qf)?
' . 29)

{5‘?9«:,)7 = &y, f12 "[C’aa_g Je"m;ya, * Flgay * Fray, *7?7:'4:”1}(5 30)



Notice the slight difference between equations (5. 13), (5. 14), and equations
(5. 29), (5.30). The latter are written in stability axes, the former not
necessarily. .

The only complication, then, is that in steady-state curvilinear flight the
elastic shape is also a function of Q. If an estimate is made of the steady-state
bank angle in a level turn, a reasonable estimate of this acceleration term
results from:

. 3 Zorn B
o = - (5. 31
[}
so that:
3 gZ‘é’f? g?; . - -5
@ = F5 sin g ,g»ljl 6. 32)
and:
sen 2Py
@l = /¢ (. 33)
Ié, 5 B
But, since Vcl ~ Uy,
-, Sinids
Rl = G =g (5. 34)

Notice that this term is certainly not negligible because even in a mild 30-degree
bank turn gzo =0.87g and Q;U;~ 0,29 so that gzo +Q;Uq = 1, 16g.

For symmetrical pullup, the value of Q;U; may be found from:

@i = (n-1)g 6. 3)

Depending on the load factor n being applied, Q;U, can be very significant.

6.4 Representation of Aerodynamic and Thrust Forces and Moments

In this section the functional dependence of aerodynamic and thrust forces
and moments is discussed. First, the parameters needed to define these forces



and moments are identified. Second, the math matical forms relating forces

and monients to motion variables are presented. Restrictions and assumptions

made in doing so ave corully listad,

L 4
]

., B5.4.1 Functional dependence of acrodynamic and thrust forces and

A

moments, — The aerodynamic force ¥ A is a function of:

The geometry of the elastic airplane, (‘c?dr?k)
The altitude h, which defines the air density P
The Mach number M and the airplane speed Ve
The angle of attack «

The angle of sideslip B

1.
b

The Reynolds number Re
The angular velocity )

The controi surface angles 6.A , ‘SE ’ GR

Airplane speed and air density (altitude) define the dynamic prescure:

g = g/pf (5. 36)

The thrust force 'F} is a function of:

]

Engine control parameters

The airplane speed V,

The altitude h, which defines the air density P
The Mach number M

The angle of attack «

The angle of sideslip B

The angular ve ocity )

: NN
The geometry of the elastic airplane, (d+7T), in certain configurations

N o
The aerodynamic moment My ¢2pends on the same parameters as the
. = o~
aerodynamic foree: (7 » ) 2 41, o, B, £o, &, 4 , S, Se.



The thrust moment Mq. depends on the same parameters as the thrust
. h )
force: Vo, P , M, , 8 , 5] , (’34?), and engine contro_l parameters.

The mathematical form of the funetional dependence deschibed above
depends on the type of aerodynamic theory used. The most commonly used
theories for describing aerodynamic forces and moments are discussed in
app.B  An interaction exists between the type of siructural representation
used and the type of aerodynamic representation used, Since it is not feasible
to inelude all possible combinations of aerodynamiec representation and structural
representation, only four possibilities are developed herein:

5.4.2 Rigid airplane with aerodynamic derivative theory
6.4.8 Rigid airplane with aerodynamic influence coefficient theory
5.4.4 Elastiic airplane with equivalent elastic derivative theory

65.4.5 Elastic airplane with aerodynamic and structural influence
coefficient theory

Specific mathematieal relations for the thrust forces and moments are not
developed in this report. It is assumed that data are always available to
properly account for thrust effects in the equations for practical situations. In
steady-state solutions it is cornmon to estimate steady-state values of the thrust
forces and moments and, if necessary, to iterate to the correct solution,

6.4.2 Rigid airplane with aerodynamic derivative theory. — The derivatives
are commonly computed in a so-called staﬁnity axis sﬁrstem. Stability axes are
defined as body fixed axes with the X-axis pointing in the direction opposite to
that of the steady-state veloeity vector, provided no sideslip exists (8=0). If
sideslip does exist, the stability X-axis is defined as pointing in the direction

-opposite to that of the projection of the steady-~state velocity vector on the X2

plane of symmetry.

In steady-state flight the expressions for the aerodynamic forces and
moments are as follows:

;;’23 = - C'g‘ 5 SW
= = { Co, * Qo #LC22 YT+ L Cos [B21] +Z 05,82y 35S
C@z‘q &, (6.37)

it |



wherei= A, E, or R, signifying lateral, longitudinal, or directional
control, respectively;

ﬁ;?es = C'Lg §5«) S

X (5. 38)
=-{Q + Contls +Crg Ty, +LCoa h8)/] + ZC25, 85,3 S

where Qg is the steady rotational velocity about the Yg-axis;

Fays = ng §S‘”

(5. 39)
Ca%&ﬂl + C:S’r 3_;2 +* Zcﬁ@gtg } 9 S"’
where R 118 the steady rotation velocity about the ‘Zs~axis;
Ab - - & (5. 40)
“LCp +Chzhy, * ZCpSifSwé
(6. 41)

= £Cy * A +C’”3 gyé [C'r’f /7 ]*Zf;;g }§5;v5

Macs dd 6.42)

= fc)gg, 2y +Cotp fi’f Zcﬂg Se .?G'lﬁ«v

In setting up these gxpressions for the steady-state aerodynamic forces and
moments, use has been made of the development in app. B. However, terms
not belonging to the steady state have been omitted. Conversely, some terms
. nof appearing in perturbed forces and moments have been added. Examples of
the latter are the Cp, Cy,, and Cm,, coefficients and Cp, 2. The coefficients
Cp,, and Cp,2 are ineluded to indicate the gquadratic relationship between Cp
and .
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There are many forms in which the drag dependence on ¢« can be written,
It isonly important to determine Cyy o Cpa® * Cp azagl = CD() such that at
the steady~state angle of attack @; the value for Cyy comes out%correctl.y. To
make the equations linear it is of course possible to write the first three terms
as Cp, @1. The term Cp here is a predetermined but artificial function of
@], detérmined to match the drag at ¢=@) and.g=0 = 0.

It should be kept in mind that all motion variables in equations (5. 37) through
(8.42) are steady-state motion variables. The derivatives are employed here
to describe total forces and moments; they are not merely perturbed forces and
moments, as is common in perturbation equations.

6.4.3 Rigid airplane with asrodynamic influence coefficient theory. — For
the calculation of asrodynamic forces andinoments under zero sideslip condi-
tions, the aerodynamic force field can be represented by an influence coefficient
matrix. Aij .

Aerofynamic influence coefficient theory is diseussed in App. B, where the

assumptions on which this thegory are based are identified as @

and The application of this concept is worked out below.

Figure 8 presents the airplane in its rigid or jig shape. All angles are
exaggerated for clarity. The attitude of the airplane is defined by the attitude
of X, Y, Z), the body fixed coordinate system with origin at the center of mass
P . Inthe jig shape P is identified as some material point. A stability axis
system (XS, YS, ZS) is also shown. _The axis ¥ = YS’ and neither of these is
shown. Built-in twist and camber may be present (X, Y, Z). In addition, the
existence of control angles is recognized by introducing the scalar column {ai }
The scalar column {a; } has zeros for all panels that are outside the boundaries

. of control surfaces, and numbers between zero and 1 for all panels within. The

term Q1 Xj/V, 1) is added to represent the panel angles of attack induced by the
rotational velocity Q1, as in a steady symmetrical pullup.

The aerodynamic forces on all panels i, using aerodynamic influence
coefficient theory, are given by:

{hf=g [.45}']{&:7}.'3 . 43)



", where:

6. 44)

Horizontal

FIGURE 8. — ANGLES AND AXES FOR RIGID AIRPLANE AERODYNAMIC INFLUENCE
COEFFICIENT THEORY

Note that the aerodynamic influence coefficient matrix [Aij] relates panel angles
of attack to loads perpendicuiar to each panel. To obtain the forece and moment
components along stability axes, it is necessary to employ the angle @ Jit

5 7 - 7 B 649

{525‘-? = §- [ALJJ E'éasoqy;_g {G(J"} (5. 46)
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AMayg, 3= gLRSTLAYT foenS (6. 47)

where it is assumed that F A is approximately pervendicular fo the X-axis.

To summarize, for zero sideslip, the aerodynamic forces and moment of a
rigid airplane panecled into n panels can be written:

Fazs = F L2 sL AG I strtt o] {0 £ (6. 48)
Fay, = 5 12 2fAy I Cos p L £ (6. 49)
Mays = 3 2#SLAs T E (5. 50)

For nonzero sideslip, it is not possible in the current state of the art to
write meaningful expressions for F AYS’ M AXS’ and MAZS in a way analogous
to equations (5. 48) through (5. 50).

5.4.4 Elastic airplane with equivalent elastic derivative theory. — Equiva-
lent elastic derivative theory is based on the assumption that the rigid airplane
derivatives of par. 5.4.2 can be modified for the effects of elasticity by multi-
plication or addition of constants that account for the flexibility of the airplane.
In app. B this is said to apply if a reasonable natural frequency separation exists
between rigid-degrees-of-freedom motions and elastic-degrees-of-freedom

motion. The assumptions on which equivalent elastic deriative theory is based
are identified in app. B.

This theory has particular value as a preliminary design tool because it
does not require closed aeroelastic solutions based on extensive paneling of the
entire airplane. Aeroe¢lastic correction factors can be evaluated on the basis
of "large scale" influence coefficients. For example, the elastic deformation
of the body can be represented by displacements and rotations at the tail surfaces.
This approach can be carried out for various sections of the airplane, such as
wing, body, or tail, The elastic influence appears as a much smaller package
than when the airplane is fully paneled. In practice, it is almost as fast and



oertainly more accurate to compwc the aeroelastic correction constants with
matrix methods (flexibility influence coefflicient), but instead of having to find
total airplane solutions, it is possible to apply these matrix n;,g:thods to the major
a;irplane components separately,

In equivalent elastic derivative theory, therefore, the conventional "puilding
block" method of considering each derivative as the sum of wing-body and tail
contributions is usually followed. This means now that lateral and sideslip
derivatives can also be evaluated and that the 8 = 0 restriction does not apply.

In the equations of motion the derivative notation used for the rigid airplane is
employed, bui the subscript E is usually added to indicate that a derivative
corrected for aercelastic effects is implied. The aerodynamic forces and
moments, therefore, have basically the same form as those of equations (5. 37)
through (5.42), but with the subscript E added.

Detailed expressions for and derivations of the equivalent elastic derivatives
are presented in app. B. One example is given here to indicate the form of these
equivalent elastic derivatives. The equivalent elastic lift curve slope of a
conventional wing-body-tail airplane can be shown to be:

Sy dc
1L Y (- N
’L“E[Vc- - CiLr, o _§_|._|_K b (a! d Xy + ac:.&) 6.51)

dn  Clygm SW  CLagmt " ™° 3n on
where:
AT /n=0 is the tail-off lift curve slope for zero load factor
o
- !
= (1-SyAL/n=0 By
k is the angular deflection at the tail due to a unit upload at

the tail (k<0)

acL /on  is the increment in tail-off lift coefficient per unit load factor

aolH/bn is the change in horizontal tail angle of attack per unit load
factor
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CL is the trim or equilibrium lift coefficient
trim

Methods for computing the elastic constant in equation (5. 51) gre given in app. B.

5.4.5 Elastic airplane with aerodynamic and structural influence coefficient

theory. — The developments represented by equations (5. 14) and (5. 43) will be
used to show how the aerodynamic forces and momeuts are formulated for the
completely elastic airplane. It was already explained in par. 5. 4. 3 that, because
of the state of the art of aerodynamic influence coefficient theory, only the case

of zero sideslip will be presented, Assumptions@ and @apply tc the
developments in this section.

It is now necessary to be more precise about the relationship between panel
angles, flow angles, and the coordinate systems (X, Y, Z) and (Xo, Yo’ Zo)‘
See fig. 9, where all angles are exaggerated for clarity.

For the deformed airplane the aerodynamic panel force matrix can be

written:
- {68 = GlA T e F G.52)

in analogy with equation (5.43) and fig. 8. The elastic airplane panel angle may

be written:

{3 =L+ + 8, » Ste2; »~Acs:f (5. 53)

where:
AaE = elastic deformation angle of panel i
LI
GE = elevator reference deflection angle (not shown)
{ai} = scalar column consisting of zeros for panels outside the

control surface boundary and of numbers between zero and

1 for panels inside the boundary

The deformation vector {Gyo_} was solved for in equation (5. 14):
i

f@,‘-; = G, 7~ [Cz«%/fm-ﬁq Cos Sper ?Frp, Cos(Sr *SEQ, g Aey)
 Fro. 7 (5. 54)
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where Frp represents the thrust components along Zo. Therefore, the
Zo;

expression for the aerodynamic panel forces on the deformed airplane, keceping
in mind that {Gin} = Ooy {1} +{pa Ei}’ and using equations (5"52) and (5.53), is:
f ey £ =LA T L -+ Eece +Epy +5eais
*[5293_72{%'70 o5 Cesr * A8, CoS(Er) 78 @ AA?.‘.)QL/;;‘O‘.?;
(5. 55)

The substitution for AaEi = 9Yi - 6, can be carried out indefinitely,
However, for practical purposes it is sufficient to assume that AaEi is small.
In addition, it is assumed that the built-in twist and camber GJi as well as the
control angle 6E are small, so that:

Cos (G +EFQS + AQay) =2 L (5. 56)

Thus:

f&qf’ == §'[¢4§/_72€r“f*5feé‘: *Gr ?‘“554"5
(5. 57)
"Lfc.-?sﬁ ,72(?77,;; Cos Sesr 7‘/;,’5" -+ Fri‘e,_’_ ;?}

Notice that at this point Qref is not necessarily small, From this equation it

can be verified that a solution for {Fp L } is:
i

£ oy 8 == f02T = F [AGTL Con,, I 340>

- - (6,98
+€,€5f; r‘é.;z' -+ é;dz'g ""[Ci’é"ﬂ./{???g!i&_‘ B oy 7‘;}@‘,";} ( )

The stability axis components of the F AR, forces and moments may now be
i

found by analogy from equations (5.48) through (5. 50):

fryy T LSy (e S (5. 59)
Faes, T2 o 1 Loosaan] £ime; F (. 60)
Mgy, == L ZoysF Fe S (5. 61)
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If desired, the effect of initizal pitch rotation Q can be accounted for by adding
the term xiQi to equation (5.53) and following through.

»
[]

5.5 Summary of Equations for Steady-State Flight

5.5.1 Rigid and equivalent elastic airplene equations of motion. — By

substituting the expressions for aerodynamic forces and moments, equations

(5. 37) through (5.42), into equations of motion (5.23) and (5. 25), the complete
steady-state equations of motion are obtained. These equations are presented in
table 1 for rectilinear as well as curvilinear flight. Those parts of the equations

that apply only to curvilinear flight are clearly indicated.

The steady-state equations of table 1 are valid also for the eguivalent elastic
airplane, provided that all derivatives and inertial constants are ev.luated to-
account for quasi-static elastic effects. A complete summary of assumptions
used in deriving the equations of table 1 is presented in table 2.

The equations in table 1 represent a set of six equations in twelve variables
pl’ als Bl’ Ql’ Rls 5A1: GElg deg 61, ‘I’l, Ul, and FT].' A total of six
variables must therefore be specified before a solution can be obtained. It is
assumed that the mass M of the airplane is always known.

In general, the preselected variables are:
(8) For steady-state rectilinear flight:

=
e Thrust Fp 1

e Rotational velocities P; =Q; =R =0
e Speed Uz
e Altitude hj (density = py)
() For steady-state curvilinear flight:
(1) Level turn:
e Bank angle ¢,
e Sideslip angle [31 = 0 (coordinated turn)

& Speed U1
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TABLE 1.—STEADY-STATE EQUATIONS OF MOTION FOR RIGID AND EQUIVALENT
ELASTIC AIRPLANES

~MEI Vs My sir O *

= Frag = & Cayy @ o [/ + ZCa, 55, 35 e 660

My ~ Ay cos O 56 P (5. 63)
= /'-‘ {C}o *‘C‘cﬂfé" -“'C}j "V *[C’-%g/‘f{ a4 "‘25'3_5’.?;?5”

M@gé’x ;6636: 06533_}
s _
S Loy 2 Cop e + Gy 5 #2053 R3S (5. 68

{-]:?3‘ "./f{: )&?&
= ey vt Oy Bl 20 Sy 35504 66

= Mrys 2L Crrs "oy s + oy .fng Ll fel] (5. 66)

*2('977‘, (_,}oswc

- =M *Zrc-»;/éz “C’.,- zy *Z'(’né; égg,gswé (5. 6%

Zs

NOTE: 1. For zero initial sideslip, substitute v, = .31 =0
2. For equivalent elastic airplane, add subscript E to all
derivatives and inertias.

3. The subscripts 1 and S are interchangeable in the stability
axis system.




TABLE 2.—-ASSUMPTIONS FOR EQUATIONS (5.62) THROUGH (5.67) OF TABLE 1

"

RIGID AIRPLANE

General! Assumptions @ @ @@ @ @ @ @

Rectilinear Flight

Curvilinear Flight @

EQUIVALENT ELASTIC AIRPLANE

636

Rectilinear Flight

Curvilinear Flight @

e  Altitude h; (= density 9,)

(Equation (5. 31) relates Rl’ Ql’ and <I:1.)

(2) Steady symmetrical pullup. (only lift and moment equations needed):

e Bank angle & 1= 0
e Sideslip angle Bl =0

=0, R, =P, =0)

° SpeedU1 (6A=6 1 1

R

e  Altitude h, (= density p,)

¢ Load factor n (determines Ql through equation (5. 35))

=)

T

e¢ Thrust
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It is assumed that none of the six thrust components are variables. In general,
these quantities are estimated so that they are essentially treated as knowns.

If necessary, iteration can be used to refine the solution. Th.e. reason for this
procedure is the complicated dependence of the thrust components on the motion
\;ariables. This relation is generally not given explicitly, but is provided in the
form of graphs and tables by the engine manufacturer,

The problems that can be solved with the equations of table 1 are as follows:
(a) Determine the steady-state motion variables when certain variables are
preselected (cases (2) and (b) above).

(b) Along with (a) comes the possibility of determining trim characteristics.
For example, it is possible to compute control deflections as a function
of the preselected variables such as speed or Mach number, -

In solving steady-state flight problems it is not uncommon to solve the drag
equation by intuition and thereby reduce the problem to five equations. Further-
more, the lateral degrees of freedom are often not desired, so the steady-state
problem reduces to solving the lift and pitching moment eqilations. In this form,
by using equation (5. 35), these equations are also used to solve such problems

as longitudinal control required per gravitational load (g).

5.5.2 Elastic airplane equations of motion. — As in par. 5.5.1, equations

are presented here for steady-state rectilinear as well as for steady-state
curvilinear flight; however, no sideslip or Y~-deformations are considered.
Steady-state curvilinear flight is therefore reduced to a consideration of steady-
state symmetrical pullup only.

Table 3 presents the equations of motion for the elastic airplane and the
assumptions on which they are based. These equations are obtained by substi-
tuting equations (5. 59) through (5. 61)into equations (5.23) and (5. 25) and by
using equation (5.58). Egquations (5. 68) through (5. 71) represent a total of
(n + 3) equations. Notice that there are (7 + n) variables: Py @, of! Opef’ 6E1,
Ql’ Vcl, FTl’ plus n elastic deformations e_Vi, which, however, are
represented by the equation for the elastic aerodynamic panel forces F Agy The
flight path angle Y1 is not listed as a separate variable, since 12 is determined
by:

-7t 0,ef = O (5. 72)

ref



TABLE 3.~STEADY-STATE EQUATIONS OF MOTION FOR THE ELASTIC AIRPLANE

[ 4
[ 3

/@ 5&5?9! = /;'zs + 2. Sé?a’:g,_‘,_/{/:?s‘-} (5. 68)
-‘/”@'g:{ “Aé? Coss B¢ :;;'35 ~L s [casczftj{gé}'? (5. 69)

O =AMy, + £ Zopt & Fircrf (6. 70)

~ - =2
(i 3me L0327~ FLAG I Cooy 1T 3LA571~
*Cpsr + Ey; * Sede * Q);ng *Zz’as_q]zr PoZg CoSCecs (6. 71

"—;}-.?.'o" }}

NOTE: Friction drag left out.

- ASSUMPTIONS: w @ R, =0
&)

Lenge

Four variables must be specified before a solution can be obtained. It is @
assumed that the mass M and the mass distribution m; of the airplane are always
known.

In general, the preselected variables are:
(@) For steady-state rectilinear flight:

e  Altitude hl (= density p 1)
e Speed Vg 1

.\
e Thrust Frp 1

e Rotational velocity Ql =0



()

For steady symmetrical pullup:

e Altitude h1 (= density Pl)
e Speed Vg 1

—\
e Thrust FTI

¢ Load factor n (determines Ql through equation (5. 35))

The problems that can be solved with the equations of table 3 are as follows:

(@

)

(c)
(@

Determine the steady-state motion variables (including the equilibrium
shape of the elastic airplane) when certain variables are preselected

(cases (a) and (b) above).

Determine the jig shape of the elastic airplane if the elastic shape is
given in some reference steady-state flight condition. (This problem

is further discussed in par. 5.5.3.)
Determine the trim characteristics of the elastic airplane.

Finally, the equations of table 3 can be used to compute elastic
correction factors for rigid-airplane wind tunnel model data. This is
necessary on very elastic airplanes because, in general, only one rigid

tunnel model shape is tested throughout the Mach range of the airplane.

Owing to the complicated matrix relations between the elastic airplane

equations in table 3, an explicit solution can be obtained only by linearizing

these equations, which means restricting the problem to small angles of attack.

This is consistent with the current state of the art of aerodynamic theory.

Solutions for high angles of attack are possible, however, provided that the

analysis:

Programs iterative solutions.

Determines a way to relate aerodynamic influence coefficients to the
angle of attack « Ej in a nonlinear manner.

5.5.3 The jig shape problem, — An important problem that arises in

stability and control calculations for completely elastic airplanes is that of the

jig shape, The jig shape is defined as the undeformed shape of the airplane and



comes about by removing all inertial and aerodynamic loading from the airplane.
n,. ", .1 » . . 2
The term jig shape is used because it is the shape in which the airplane structure

is assembled in the jigs, where it is ncarly continvously supparted.

If a certain shape is desired for an elastic airplane in some flight condition
(for example, to achieve an optimum lift/drag ratio), an accurate knowlege of
the jig shape is important to ensure that the desired shape is obtained. Four
items are needed to determine the jig shape of an elastic airplane:

® The aerodynamic loading in the "design" flight condition
¢ The desired shape in the design flight conditit

@ The mass distribution in the design flight condition (structural as well
as nonstructural mass)

® The structural properties

With the aid of these items an "inverse'" aeroelastic solution can be obtained.
The term "inverse" is used because in most aeroelastic problems the
task is to find the equilibrium (loaded) shape. In the jig shape problem, the
task is to find the unloaded shape that when loaded in a known manner results
in a known shape.

Another important application of the jig shape should be mentioned. In
testing rigid wind tunnel models, the characteristics of only one shape are
found over a range of flight conditions (Mach number and angle of attack). By
knowing the jig shape it is possible to compute the shape in other than the
design flight condition, and with this the stability and control properties. By
also applying the theory to the rigid shape at the test flight conditions, it is
possible to find the correction factors that should be applied to the rigid wind
tunnel model data.

A simplified approach to finding the jig shape of an elastic airplane is
outlined in the remainder of this section.

Applying approximation (5.56) to equation (5. 54), the result is:
{Ae, 8 =LC20y It g cos Goee *Fei * Freocf  6.79)

Substituting equations (5.52) and (5.53) into equation (5. 73) yields:
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facxss 6. 74)
= [5’59,3_7{77;2;/0 Cos Cege » G LA TS T+ Cocr +Ey S Ac’
"‘Aa);;')??"/:fga" §
If the equilibrium shape is known, this means that {Aoin} for the design

flight condition is known, Equation (5. 74) can then be used to solve for {6 Ji},

since in the design flight condition the other variables v, eref’ ) 5’ and FTZ
0f

are also known. The column vector {OJ_} represents the desired jig shape.
i



6. PERTURBED EQUATIONS OTI" MOTION

6.1 Introduction and Definitions -

The purpose of this section is to present equations from which the stability

of steady-state flight and the response to control deflections can be determined,

To study the stability of an airplane in any steady-state flight condition, it
has been found useful to write the state variables as the sum of a steady-state
quantity and a disturbance (or perturbation) quantity, The algebraic manipula-
tion needed to do so is called the perturbation substitution, In this manner, the
steady-state equations are recovered vhen the disturbance quantities are set

equal to zero.

In the past the reason for using the perturbation substitution was to deriifé
small disturbance equations of motion, Those equations are based on the "small
disturbance assumption, ' which implies that preducts and cross products of
disturbance quantities are negligible, As a result the equations of motion
become linear, but have only limited application. The developments of refs. 4
and 36 are typical examples, It should be noted that the perturbation substitu-
tion itself in no way restricts the validity of the analysis. Only when certain
assumptions regarding the size of the perturbations have been made does the
analysis become restricted in its validity,

The following typical perturbation substitutions are made:
- . e -
F=F,+F
PP +p (6.1
U=U, +u
To assist in the identification of perturbation quantities either a lowercase
symbol or a subscript p is used. Note that in par, 5,2 all motion variables

were total variables, whereas in par, 5,3 all motion variables were steady-
state variables,
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In dealing with perturbations, the follo‘wing; philosophy regarding their size
is introduced, Distinctions will be made betwcen:

e Small perturbations
e large perturbations

e Arbitrary perturbations.

6.1.1 Small perturbations, - Small perturbations are defined as having
such a size that their products and cross products can be neglected, It is not
possible to associate any definite numerical values with such a definition,
However, for purposes of discussion the following is suggested as a typical

bracket for small disturbance variables:

|x.B8,6,9| < 2.5°

6. 2)
|lu,v, w| < .045 v, (

The value 0, 045 was selected to satisfy the first inequality. However, the
value 2,5 degrees is arbitrary,

Lyapurov's stability theory can be used to compute the size of disturbance
under which the small perturbation assumption can be made, as is shown in
ref, 23, Classical stability theory cannot cope with this problem, Detailed
discus<ion of this subject is deferred to Sec. 9,

6.1.2 Large perturbations, - Large perturbations are defined as having
such a size that their products and cross products cannot be neglected, How-

ever, it is still assumed that angular guantities satisfy the condition:

sin 6 =~ ¢
tanh &8 == 6 (6. 3)
Cos 6 = ©



This means that the trigonometric relations involved in the perturbation
components of Tg"\ along X, Y, Z can still be written as in equation (6.3), The

following arbitrary size brackets are sugyested:

i
&

|x.8.8,¢] < 7.58° (6.4)

lw,v,wl] < .13y,

Aerodynamic theories used in stability equations for large disturbances
should be able to account for large perturbation effec. in order to provide

realism to large perturbation equations,

6.1.3 Arbitrary perturbations, - In this case, no limits exist for the

perturbed motion variables, Equations of motion involving arbitrary perturba-
tions should be used in such flight conditions as severe upsets and airplane

spin, Because such maneuvers can hardly be classified as unaccelerated (in the
forward speed sense), no detailed equations have been developed to cover these
cases,

The equations of motion are developed in perturbation form in pars, 6.2
and 6,3. Paragraph 6.3 makes use of the lumped parameter representation of the
airplane, The aerodynamic theory used in the pertarbation expansions is
discussed briefly in this appendix and in detail in app. B.

6.2 Expansion of the Momentum and Moment of Momentum
Equations for an Elastic Airplane

6.2.1 Momentum equation, - The general form of the momentum

equation (4. 8) is:
d -t - - -t
M3t (V) = M3 ‘*./;Fds (6.5)

To write this equation in body axes it is necessary to substitute

- o> (6. 6)
dVe _ Ve . 554V
T T 3p twx\e

3



After carrying out this substitution, equation (6. 5) in expanded form is:

MU+ M{QW ~ RV) = ~Mg sin 8 + Fa, % Fr,
MV + M(RU = PW) = Mg cos B sin § + Fa, * Fq, (6.7
MW + M(PV -~ Qu)

1

Mg cos & cos § + Fp, + Fy,

The dot (.) indicates a rate of change apparent to an observer fixed to the body
axis system,

Typical perturbation substitutions are introduced as follows:

Q= 4, + q
©=> 6, +06
U U, + U (6.9

EA::)‘ EA,"' EA
Fy=p Tr, + Fy
Substitution of equations (6. 8) into equations (6. 7) yields:
Mg + M[(Q. +g)(W, +w) = (R +r)(V,+ v)]
= - Mg sin(6,+8)+ Fax, *Fay+ Fre + Fr,
Mv+ MR, +r) U+ u) = (P +p} W, + w)]
= Mg cos(0,+0) sin(d « §)+ Fay + Fay + Fry ¥ Fry
M+ M (R AV v) = (@ + g Ui+ )]
= Mg cos(,+6) cos (d+ @) +Fa, + Fa + Fr, + Fry

(6.9)

The steady-state equilibrium condition (subscript 1) is coupled with the per-
turbed state through trigonometric functions and products with perturbation
variables, In the form of equation (6.9), the momentum equations are valid for
arbitrary disturbances.

For most practical purposes it will suffice to make the large disturbance
assumption:

cos (perturbed angle) = 1 (6. 10)

sin (perturbed angle) = perturbed angle



Thus the steady-state form of the equations may be used to simplify the

perturbed equations to:

Ml:i"'M[Q\V\/"‘q_.W"i‘g‘w ‘*R‘V—rv.-rvj .
==-Mgb cos O, + Fp, + Fp,y

Mv + M [R.u +rU + ru -Pw - pW, "’PW]
= Mg {45 cos &, cos §, ~0 sinB, 5:’n§} + FAg + FT, (6.11)

M\:\"‘-M[P‘V +pV| +PV - Q|U-. "q_U| —q.ul.]
= Mg {-9 sin €, cos ﬁn - §cos B, sin é‘} +fay v Fry

=\ =~
Note that fp and fp are perturbation forces.

Equations (6.11) are dynamically nonlinear, which means that products and
cross products of perturbed translational and rotational velocities occur in the
equations of motion, Whether or not the aerodynamic and thrust terms are non-

linear in the motion variables depends on the theory used to describe them,

The perturbed momentum equations are not dynamically coupled with
elastic degrees of freedom. Aerodynamic and thrust coupling with elastic
degrees of freedom exists, however, because these forces in general depend on
the deformed shape, The extent of this coupling depends on the mathematical
models used to describe f;; and f%. Tn this section rigid and equivalent elastic
derivative theory will be used to eliminate elastic degrees of freedom from

the equations,

Equations (6.11) will now be written in stahility axes, At t=0 (before
the perturbations are introduced) the Xg-axis is aligned with the projection of
V'Z on the XZ vlane, This implies W1 =0 by definition, Note that V1 may be
nonzero, which implies that steady-state sideslip is admissible, In stability
axes, equations (3,11) yield:

Ma+M(Qw+ gw -Rv=rV, -rv)
= ~Mg B cos B, * Fa, * Fsz
My +M[Ru+rid +ru=-Pw-pw) (6.12)
= M9(¢ cos 6,205 §,~ Ben 8, sin §, )+ Fay Fryg
M +M{Rv +pVi+ pv = Juu=- gl - gu)
= Mg (- B sin6, cos §, ~ ¢ cos B sin d.)+ FA‘s* FT's
These equations are still dynamically nonlinear,
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The following two cases are most frequently encountered in solving
stability and response problems:
e  Steady-state rectilinear flight: .

In steady-state rectilinear flight the following conditions hold:
P,=Q =Ry =0

No sideslip Small perturbations

Vl = 0 00 =0
qw = 0 (cyclic)

1l

Equations (6. 12) are reduced to equations (6. 13) and are presented in

table 4, They have become dynamically linear,

No sideslip Large perturbations ==

Vi = 0 e¢ = ()
qw = 0 (cyelic)

Equations (6.12) are reduced to equations (6. 14) and are presented in
table 4. They remain dynamically nonlinear,

Sideslip Small perturbations
Vy =0 69 =0
awv = 0 (cyclic)

quations (6.12) are reduced to equations (6.15) and are presented in

table 4, They have become-dynamically linear,

Sideslip Large perturbations

Vi# 0 ¢ =0
qwv # 0 (cyclic)

Equations (6, 12) are reduced to equations (6.16) and are presented in
table 4, They remain dynamically nonlinear,

o  Steady-state curvilinear flight:

In steady-state curvilinear flight the following conditions hold:

P =0



Sz,
q =

m@:._m .“Qmou&.v.@.mou MQfm%M m.§+
mj\m -Ad 4 ﬁﬂb-mﬁ\c N+ MW

Ky, _

mﬂb +

. SA
o 2 +

[eo0Tgeang s Puisgbyy+
(md-na+ ATDNF AW
T T =TGN - o+ I

Wﬂ‘r. - flﬂ.t

. 2 Q. =
@?w F59%¢ +.@amoo N%c.a&m”e.?
miw - >Q+m.3.w§+>.>§
me.Q + Ry
g Guisusg by
m ] (md-md DN+ AW
.Fm + :&. = .@mooQ.m.E +A>L|>>@E +,E\<

U0 TF QN3 T3] mmhdﬂ 2°1y

(9T °9) SUCTLeCINGId @dJs] 2°2V (%1 °9)
Sz, T2y
3t 4 = S s
Q mﬂ - Ry Zy
(G prongs g ven s By g+
. 7. T T
Do dq + oy [BETR g Foo ) BTN
s/ S¢ ) mAP + MA@
L ¥ ==
A soo g8 ."u.Sv“_.w Smor w.l.. 7 A h.@.moog@moﬂv&l.@‘:wﬂ%&w%\oww\c+L._.D_\<+ AN
(8 <or soogp-"uspumg) oY ATIN + £ W R
s S . —_—
Yip 4 xmu....n ﬂ@ﬂOUQhE.T Lyzl.ﬁz + J = @°°°¢ W* d._\<
(¢1 *9) suocTjeqanglad YTeuUs T°gV (2T 9) suotjeqanidad Trews T°IV

93e3s Apeass ul di[sepis

a383g ApEe)s ul di[sapis oN

LHOITA dAVINTTILOTY
—ANVIIHEIV JILSVTI NV ¥0:A NOLLOW 40 SNOLLVQOI WALNIWOW AAGINLYAd—"¢ TTdV.L

77



No sideslip Small perturbations

V]. = 0 O¢p = 0
qwv = 0 (cyclio)

1l

Equations (6,12) are reduced to equations (6.17) and are presented in

table 5, They have become dynamically linear,
No sideslip Large perturbations
vy =0 09 =0
gw # 0 (cyclic)

Equations (6, 12) are reduced to equations (6. 18) and are presented in

table 5, They remain dynamically nonlinear,

Sideslip Small perturbations -
Vl # 0 09 =0
qw = 0 (cyclic)

Equations (6,12) are reduced to equations (6.19) and are presented in

table 5, They have become dynamically linear.
Sideslip Large perturbations

qw = 0 (cyclic)

Equations (6, 12) are reduced to equations (6.20) and are presented in
table 5, They remain dynamically nonlinear,

Combinations of these momentum equations with the moment of momentun
equations to form solutions of stability problems are discussed in par, 6.3, as
— Y
is the development of expressions for f5 and fr.

6.2.2 Moment of momentum equation, - The general form of the moment

of momentum equation (4.,9) is:

d [ dF - [ =< F 6.21)
3t J:rxdt/-’AdV—Lr;(FdS (
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hU

The perturbation substitution is to be made in this equation, In part, that
substitution involves the relative position vector T such that

- — -— .b

v T + d, +dp
- - (6.22)
ntdp

. ¥ o
where dp is the perturbed elastic deformation vector and rj is the relative

position confaining the steady-state elastic dzformation vector.

Substituting equation (6.22) into equation (6, 21) yields:
d - - d -t - - - -
In the body axis system the operator (d/dt) is replaced by (d/dt +"c5\x) S0
that:
= adp

d - — - - LA
st [ (7 rde)x (Bx7 + §E+ B x3p)Bav= [V xFas

or after expanding:

,;_J,O

ddp 247
[{r.x(wxr)+dpx(wxn)+rx *dpX 37 (6.23)

+ ¥, x (@ xdp) /p*féoxdp)} dv-*fr xFds

An assumption that was made in expanding the left-hand side of equation (6.21)

is that the effect of spinning rotors on perturbed airplane motions is negligible.

Because of assumption @ whereby all structural perturbations are
defined as small, the fourth and sixth terms in equation (6.23) are negligible,
Using normal modes to describe the structural perturbations, it ecan be shown

that the second, third, and fifth terms in equation (6.23) are not coupled to



dynamic elastic motion by virtue of the normal mode properties to be introduced
by equations (6.45) and (6.46); these terms, then, will be ignored. The first
term is the dot product of the inertia tensor and the rotational velocity,

Equation (6, 23) therefore reduces to:

d -~ -~ =
gf‘("{/lw) ~-/;rXFdS = My + My (6.24)
where z-p'l is the inertia tensor relative to the steady-state shape and where the

right-hand side has been replaced by a thrust and aerodynamic moment,

In common matrix notation, the inertia tensor, which is symmetrieal, is

written:

Txx, . ~Izy, —1lxg,
W, = |-Ivy,  Iyge Ty, (6.25)
“Ixz, -1yz, Iz,

where "zp'l is defined in steady-state notation by:

¥, @ =jv"f-', x(fa;'x?,)ﬁ}.,dv (6.26)

If the commonly used symmetric airplane assumption is used, equation
(6.25) reduces to:

Ixx, o ~Ixz,

R

‘If, =10 Lyy, o (6.27
“Ixz, o Tee,

The important conclusion to be drawn from equation (6. 29) is that the
moment of momentum equation, like the momentum equation, is dynamically

uncoupled from elastic degrees of freedom., Notice, however, that the left-hand
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side of the momentum equation (6, 5) uncouples naturally from the elastic degrees
of freedom, The left~hand side of the moment of momentum equation (6, 23)
uncouples from the elastic degrees of freedom only because of assumption
The elastic degrees of freedom are coupled with the rigid deg;‘ees of freedom

in the aerodynamic and thrust moment term on the right-hand side of

equation (6.24).
Expansion of equation (6, 24) in cartesian form yields:
Txx, P~ Iz, R ~Ixz, PQ + (Lzz, ~Iyg, JOR =Ma,_ + My,
I%‘sé + lxa,s(Pa“Rz) + (sz,s“lzz,s) PR = MA"S+ MT"s(G-zs)

Izz'sk "lxz‘sé + IXE‘SQR + (ngls" Ixx.s)PQ = MAZS + M'rzs

Equations (6.28) are valid Jor arbitrary perturbations of the motion

variables except, of course, the structural perturbations,

Using the typical perturbation substitution, equation (6.8) results in:
I"xls'.: - I’ELJ - Ixa.s(P:*' P)(Q: + g.) + (Iza,s‘Ieyls)(Qu"‘ Q)(Rn*‘ r)

= M +m + M +m
Ax‘s Axs TXIS Tgs

Iqulsé + Itz.s[(Pl-l-P)z_ (Rl 4 vr)z] 'l'(Ix,x‘s_Izs_"s)(P' + P)(R' + Y)

6. 29)
=My, +m + M + m (

Iza,s'.’ —Ilesf.’ "‘IXz,s(Q:*q.)(R,* r) +(Iqq,s'lxx,s)(ﬁ -»-p)({.;)ﬁ Q_)

= M + Ma +Mr1. +my
Al;s Eg zls L3N

After eliminating the steady-state form of these equations, the moment of

momentum equations in perturbation form are:
Ixx, P bt“'s'.' —-Iu.s(P. g+0,p+pg)t (Taa, - Iw.)(Qa r+R,g+gr)

-

=m + me
Axs xg

I.,.,,’q'_ *Iu,.(ZF’,p +pr-2R,r-rt) + (I"-,"In«s)(P' r+R,p+ pY)
- MA"’ + "\T"*

. . 6. 30
!l!‘s"-Ix;|sp +Iu|‘(0,r +R|g4%!’)-’-(I‘H‘S-Ip‘,s)(Pl%'fO,p ng_) ( )

= mAas * m"'ls
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where M, and M, are perturbation moments. These equations are
dynamically nonlinear, Whether or not the aerodynamic and thrust terms are
nonlinear depends on the theory used to describe them,

L4
]

Equations (6,30) are normally expressed in stability axes. Doing so does
not change the form of equations (6,30), It does imply, however, that all
inertial constants become a function of the flight condition (in particular the
angle of attack) selected for the steady reference state, even for the rigid

airplane, This is a well-known fact in rigid airplane stability analysis.

The following two cases are most frequently encountered in solving stability

and response problems,

e Steady-state rectilinear flight:

In steady-state rectilinear flight the following conditions hold:
Pl = Ql = Rl =0

Small perturbations

pr = 0 (cyclic)

Equations (6, 30) are reduced to equations (6. 31) and are presented in

table 6, They have become dynamically linear,

Large perturbations

pr = 0 (cyclic)

Equations (6, 30) are reduced to equations (6.32) and are presented in

table 6. They remain dynamically nonlinear,

e Steady-state curvilinear flight:

In steady-state flight the following condition holds:

Ple

Small perturbations

pr = 0 (cyclic)

Eouations (6.30) are reduced to equations (6,33) and are presented in
table 6, They have become dynamically linear,
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Large perturbations

pr # 0 (cyclic)

Equations (6. 30) are reduced to equation (6. 34) and are presented in

table 6, They remain dynamically nonlinear,

Notice that the distinction between sideslip or no sideslip in the steady-state

condition has no effect on the form of the equations in table 6, Combinations of
the moment of momentum equations with the momentum equations are discussed

in par, 6.3, as is the development of expressions for m A and mep,

6.2,3 Inrernal equilibrium equation, - The general form of the internal

equilibrium equation (4,49) is

o~ s s - g -~ © e (6. 35)
d-d,-8,x¥ =Lﬂ'(R-PA0-)dv +j;r;,ot= §(r -rs)dv

The perturbation substitution is to be made into this equation, But first it must
be noted that the body force is solely due to gravity, i.e.,

- - >~ - -
R=Fag = Fag(-sin Ot + cos B sin ¢4 + cos Bcos ¢ k)

(6. 36)
and that the acceleration is:
=~ _d2¥’
a = ‘J"{"i (6.37)
where:
Y=t +F~+d (6. 38)
so that:
O L LTI
a=ﬁ+m(?+d) (6. 39)
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= N A
with T a constant and dro'/dt = V. Expanding the acceleration gives:

oV o*d 208 ow -
- 3 - = : W e
= s oy XV e = i W S
a 3t X Ve at&.;;‘ Y AATIIR'S i ()t )\.(r d} (6.40)
- - = -
+ wx[wx.(r +d)_]
In the perturbation substitution:
-t —t -dn 3
d = dl + dPn %’-E"l" = 0
. Y
W = W, + wp, -é-«“ti-‘-—ﬂo (6.41)
- - e V
Ve = Vi +Vep, G s0
Thus the acceleration vector is written:
oV * o%d ad,
-t - - - alv -
Z= .5%°_P+ (@, + &5p) x{ Ve, + Vep) + Tl 2 (@, + we)x FFF
az(’)“ > s - - - -~ -~ -t
+ S22 (¥, +dp)+ (@, + wWp) x[(&, + @e)x (K +dp)]
(6.42)

On separating into steady-reference and perturbation quantities, it follows that:

A, = w,XVe, + Z«”).x(&‘)'.x'?-,) (6.43)
and;
..; a?” - oy = - = a""j
Gp = A B pn(le Vo) ¥ BoxTep + SEE O
-fe*,(u),-t-(ln’}p)xi)tE + a‘:" x (v, +dp)+wpx (&

+ Dp)x (7, +dp)]+ B x[Bpx (7 +Te)) + @, x (@, x3p)
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Hence for arbitrary perturbations the internal equilibrium equations become:

In the steady-reference flight condition the internal equilibrium is given by:

ot

d‘ - do. e 90, x?:

- R . = e o (6.4€
:':j;r;-(?.-cz,)adv + J:,“'F’- s(r ~rs)dv

For arbitrary perturbations, th: equations for the steady-reference flight
condition cannot be used to simplify the perturbed equations. This complication
arises from the gravitational term 7-;‘ as it did in obtaining the momentum
equations (6. 12), The substitution of perturbed Euler angles into equation
(6. 36) does not admit this type of separation because of the trigonometric terms.

The separation becomes possible when the large perturbation approximation is
introduced,

Free vibrations of the airplane are governed by ti.. - . . al equilibrium
equations with all applied forces set equal to zero and the airplane moving at a
constant velocity withcut rotation, Thus,

-t

E
R

-hy
Vc, =

B

0
o) (6.47)
0]

-

8; ]
[}

Under these conditions the internal equilibrium equations become

e =t == -« Z”' N
Z”‘do"eo X?‘J = - ‘/;,l",- %‘t%-@.dv (8. 48)

1n addition, the momentuin and moment of momentum equations become

d dv
dt T

A%

dv = 0O (6.49)
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and
d d r (6. 50)

= e = 23 /342 :
Because r' = r\y+TF+danddr 0/di: = 0, the momentunm equation becomes

(6.51)

24 ~
fv ore A dV =0

Further, because ® = 0, the moment of momentum eqguation becomes
—~ -ty
f(r+d)x t,_ﬁAdv = 0

=
Neglecting products of the elastic displacement vector d, this reduces to

3% -
¥x otz FadV =0 (6.52)

Thus the equations of motion for the freely vibrating airplane are given by

-k rCy - = _ - 626
oxr = —-[/r:, St PadV

r3
[ 5 mav=o
~ (6.53)

A solution to equations (6. 53) may be ohtained by writing the time-varying
-
vector field d(X, Y, Z, t) as a produet function, i.e.,

=‘~$(7‘:9'§) T(¢) (6.54)

Substituting into the equations of motion yields:

- < b =~ 7 =~ —_— o “-
T[¢'¢(°)‘§(V"¢’}r=ox‘"]“ van b av (6. 55)



A separation of variables may be carried out with the introduciion of a separation

constant w2, It follows that:

T+w*T =0 ) (6. 56)

and

- - - -
[} - - v} 2 -
-— — = . 6. 5
¢-P(O)~5(Vx9) _x¥ w/;a ¢ 2dv  (6.57
It is seen from the form of equation (6.56) that the dependence on time is simple
harmonic with frequency w. The vector °§5\ is termed the free-vibration mode
shape., Equalion (6,57 is an eigenvalue problem having an infinity of solutions

s g . 2 . .
consisting of eigenvectors $;» which correspond to eigenvalues w2i.

The equations of motion for this case are linear, so it is possible to form

an infinite sum of solutions as:
= < > (6.58)
d(x.“-j,l't) =2¢)¢: (21512) u[(t) :
i:l

This result is also a solution if the infinite set of eigenvectors (mode shapes) '6\1
can be generated,

The equations of motion may now be written in terms of the free vibration
modes as:

.L&qs‘ dvV = O [/&?X¢idv=o (6.59a)

U + Wi ug =0 (6. 59b)

- = s = 2 - - (6. 59¢)
b~ 0:0)- L(Fx 3 xF = wl [a P Biav

-
The constant vectors ﬁ\i(O) and 1/2('€x 6;) oXr may be evaluated and eliminated
from the formulation, Multiplying the internal equilibrium equations by Py
and integrating over the volume, it follows that since

./\;’fx 9;dv =0 , \_/:Fiﬁ X ; dV =0 (6. 60)
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Tenn L,

R

then:

"

-~ w -
¢:(0) = ~ ﬁ[& [H‘¢c dVdv (6. 61)

-\
Forming the cross product of the internal equilibrium equation with p AF and

integrating over the volume results in:

-

2 AFA(Fx 8o nFlav =l [RFx [7i- §: 4 avay
(6. 62)

But the left-hand member of this expression may be written in terms of the

inertia tensor such that:

= =~ 3 - 2 = 5.6
V- (xdr = Wi aFx[RBigavav g

\'4

where: _
Lux Iy Ixe
| =N
Vo~ (I Iy I
Iz.% Izy Izz
L N
so that:
- "';l e [ e
~3(Vx9:)p.o =0} W [ RFx [F- 6,8 avav

(6. 64)

-
Milne (ref. 43) noted that equation (6. 55) leads to elastic deflections dp;, which
are measured relative to the mean coordinate axis system. The mean axis may
rotate relative to the directions of the axis of principal moments of inertia of

the airplane, If the second condition of equation (6, 60) is replaced by the

[(5¢: +F¢,)pnav=o0

‘/:(E P x *7’?¢2)/°Adv

conditions

i

0 (6. 65)

L&, +7¢)Amdv=o0



then the elastic deflections are measured vrelative to a principal axis system,
For most airplane configurations in which the dominant elastic deflections ace
transverse to a radius vector from the ¢, g.the mean and prinq:pal axis systems
are identical within the order of approximation of this analysis,

By defining a new structural influence function as
y g

Glxy.zi£.7.8) =T (xy,2: £.7.8) (6.6
= “"M‘/\:E(r,s.tj £.7.5)A(rs,t)drdsdt
+¥(ry,z) x [P [F(ns.t)xfi(n st; £,7,6)4 (r.s.t)drds dt]

the internal equilibrium equation for free vibration becomes:

§:lr.y.2) = wi [Elx.u,2:8,%,6)-§:(6M.5)R(£,7, §)d§d M6

(6.67)
where the symmetry of f‘o in X, Y, Z) and (&, n, &) has been used to
write:

[& ﬁ:qb,-/g\avav =£a¢i-£r°@dv4v .
.68)

and

[&?’Xﬁf},' $; A dVdV = "j\:& ¢. "/:(?“Jx M) A 2VdV (6. 69)

The above result represents an infinite set of integral equations of the
homogeneous, Fredholm type in which the components of the tensor G are the
kernel functions, The equations are satisfied if TpAl is a zero vector, but this
is a trivial solution. An infinite number of nontrivial solutions are found by
solving the eigenvalue problem represented by equation (6.67). These non-
trivial solutions are termed characteristic solutions 'qb”\i (eigenvectors) and
correspond with values of w; termed characteristic values (eigenvalues).
These eigenvectors have properties of orthogonality, which are found in the
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following mamer. Forming the scalar product of pA'a‘j with the internal

equilibrium equation as given by equation (6. 59) and integrating over the volume,
[ =N
the symmetry of I, may be used to write:

»
[]

[&cb,;-@dv w%/;/% @; -fvﬁ,-rbiadvav
o A (6. 70)
=wf[& @; '/Poqu}PAdV&V
. v

1

But this is precisely the result that would be achieved by starting with equation
(6.59) written in terms of the jth eigenvector as:

7z b= o w7
0; -0 0 -3 (VX o XF = o [Ti-§iR av ©.m)

Integrating the scalar product with pA?ﬁ\i then results in

- - - - 2 - D -
C [akedievs [aF by =l [30 [

5 ¢j R dvdy

(6. 72)
Comuining the above two expressions leads to:

o_(z Z. - .,_.Lp
={w; —w‘,)j;@q&‘. '[“"bf' 2 4V dV

(6. 73)
If w; = wj, it follows that:
[Qag-_fv“,ﬁi&avdv:o' (g
and conversely, 6. 43
[ad [f-§ravav=rr, =

where T; is the generalized flexibility associated with the ith mode, Similar
reasoning leads to the orthogonality property

f/% $;,' @ dV =0, L4 (6. 752)
v - »

m; , £=;

L

H2



where x"ﬁi is the generalized mass associated with the ith mode.

. ¥
The vectors 9; are the free-vibration mode shapes. Dividing the mode

shapes by m;, one may define normal mode shapes ?a"\i so that:
¢, = — ¢ (6. 76)

The orthogonality expressions, equations (6. 74a) and (6. 75a), may be written

in terms of the normalized modes:

[p‘\é_ﬁi-‘[m-g‘:jadvav:rzﬁ“ i=4
=0 , i 4
(6. 74b)
and
.Lp" $.03iav=1 , i=4
=0 )
! 4 (6. 75b)

Returning to the internal equilibrium equation with the arbitrary perturba-
tion substitution, that expression may be written in terms of the new structure

-
influence functions G as

4, +3p = [[C-(5-%,-ap)maav+ [[G-(FeF)s(F-R)av (4 1n

Introducing the large perturbation approximation, it follows that

‘.; ~ g, + gp (6. 78)

so that the steady-reference motion equation (6, 77) becomes

d, =f5-(’".-EZ,)PA dv +f&f-§,s(?~?s)dv (6. 79)
v v
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The internal equilibrium equations in the perturbation form may now be written:

dP G («3 a,,)ﬁ dv +f6 Fs(r%rs) dyv (6,30

-
or, in terms of T,

dp -dp.~0p, x¥ = [T -(§a ~ap) v + [T+ F 8 (F-T)dv(e.8n

The perturbation elastic displacements may now be written in terms of the

normal modes as:

=23

= U;

e=| L (6' 82)
Recalling the form of the perturbation acceleration from equation (6, 44),

that vector field may be written in terms of the normal modes as

Ve o
ap = “a‘EC'P’i‘zp X(Vc +ch)+w,XVcP + au:P X,
X [
X[w-n—wp))(r]-i—w X(ZBP)("F,)-» $; U,
L=
e &, a"' e -
+ 2(&, +wt=) 2 b v+ '3%3 x> Do (6. 83)
AN o e=1
+ (5, + Bpy x[(@, + @) x 5 9, u;
£=

The first six terms of equation (6. 83) do not contain the mode shapes and are

essentially rigid-body perturbation accelerations, They will be denoted by:

:: 6:/\ ~A > - - = a-b =
Ao = J5T+ Wp X (Ve, + Vep) + @, X Vep + -;ﬁ’f X ¥, 6.5
+wp X[(®,+@p)Xx 7] + @ X (Dp XT,)



The final three terms of equation (6, 83) enter scalar products with ?o when

equation (6. 83) is substituted into (6,81). These may be written:

-~ o = a;P S K
r‘..{z(w,+wp)x§__¢£u‘. + ST xZg‘}‘ U;
= =1

il
PEN - o oo -, E\‘ZE o oD (6085)
=2 [l v iop) x11]- aui“[é”{f,xn]'&@zuc
e=l =)

~ (@, By xR)-[£ 8w x(B0+ 52)]

Equation (6. 85) introduces the coupling between elastic deformation and
airplane rotation. If the properties of the normal modes developed above are
used, all these terms vanish, This cannot be taken to mean that this coupling
does not exist. It means that it is ignored when the normal modes are generated
from the eigenvalue problem represented by equation (6.59) and are introduced
into the analysis, This tacit assumption is always inclﬁded in elastic airplane
analyses in the literature, but is not always described, The assumption of
small rotation rates and rotational accelerations, which is taken to be valid in
these reports, justifies the deletion of these terms for the present analysis.
The rotational accelerations and rotatiors rates of large airplanes are indeed
small, Hence the products of these quantities with the perturbation elastic
deflections and perturbation elastic deflection rates are ignored, The terms
in equation (6.84) represented by equation (6. 85) are dropped from the analysis,

and the vector é';) is reduced to:

-~ 2 3+ e ~ 6.8
dp = 3 &, U, +ap (659



With these approximations the perturbation form of internal equilibrium may be

written:
20 > -3 - -t =t el ':' s oo
Zézuiudpo’“epoxr = ”[ '(Z@(_)/OACIVUL
é=l

This result is valid for large and small perturbations of large elastic airplanes

having small rotational rates and rotational accelerations,

Equation (6.87) may be formed in a scalar product with PA@E; and integrated
over the volume V. Using the orthogonality represented by equations (6. 74b)
and (6. 75b) as well as equation (6.59a), it follows that:

Ui = -0 + [ ;g 'Iﬁ’(§P - &) A dVV

(6. 88)

+fF’A &:,' /F'.‘ ﬁs(;‘:“?s) dVdVv
v v

The symmetry of f‘o may be used to write equation (6, 88) as:

U; + nym; U xJ: [(;F-’Z“)PA+E‘8(F—Fs)]:[/ﬁ-§ipAdVdV (6.89)

Recalling equation (6, 59c), it follows that:

(6. 90)

P e

- T | R 3 =
/:fl'§5&dv = & (9~ ¢;(0) - $(Vx ). 2¥]
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Substituting (6. 90) into (6, 89) leads to:

— 1 - 4 z
u; + n‘JL'oi -.wi‘/sr-@éds wz{f[(%,, a.

P (-] [+ 5 (T 8)), x'?]} av

The last term of this expression vanishes as a consequence of perturbation form
of the conservation of linear and angular momentum. Hence the internal

equilibrium eguations in terms of the normal modes are given by:
Ué+r;m wsz-@ ds (6. 91)

Multiplying equation (6. 90) by pAgj, integrating, and using the orthogonality
of equations (6. 74b) and (6. 75b) leads to a determination of cozj as

e = [ m; (6. 92)
so that equation (6.92) may be written:

uj + 3y Uy =y [E-3; ds (6.99)

Finally, defining generalized aerodynamic and thrust perturbation forces as
= m; [F 3 ds
Q = my J FQ (6. 94)

the internal equilibrium equations may be written:

U.

d+r}m- U; =1y @ (6. 95)

4

The quantities 1“3. may be denoted as generalized flexibilities, and ™, may

J
be denoted as generalized masses, Equations (6, 95) represent an infinity of
ordinary differential equations, They are coupled only through the generalized
forces Qj. In general, they are coupled not only with one another, but also

aerodynamically with the rigid-body motion of the airplane,
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The elastic perturbation displacements Eﬁ\), which are related to the
generalized displacements uj, are not changes in position relative to inertial
space. They are changes in position relative to a mean axis system when
equation (6. 60) is used as a condition in the formulation or relative to a princi-
pal axis system when equation (6, 65) is used, Itis clear that equations 6, 95)
no longer contain the perturbation acceleration and gravity forces, However,
the generalized forces Qj also do not contain the entire aerodynamic and
thrust perturbation forces, The operations leading from equation (6, 89), con-
taining ép - ?Tsp) Py, to equation (6,91) remove a distribution of aerodynamic
and thrust forces that balance the perturbation inertia and gravity forces

=\
(gp - ’ai‘p) P at every point of the airplane,

If the dependence of lI‘A“0 on t*.2 coordinate through the thickness of the
structure is eliminated in the above formulation, as it usually is in practicé;:
the above assertlon is morc acceptable, Aerodynamic and thrust forces that
just balance (g - p) Py x (thickness) are subtracted, The computation
f SM (f - fl) <I>dS which is the difference between the upper and lower
surface pressures integrated over a mlddle surface of the structure Sy, is
calculated from the deviation of (f - fl) from the pressure difference that

just balances (g - ap) Py X (thickness) at every point of the su.face,

These considerations are vital to an appropriate formulation of residual
flexibility. In that formulation, some of the normal modes are eliminated
from the problem. 7The deflections of the structure associated with the
eliminated modes ars treated as quasi-static, Inertia relief and gravity force

perturbation must be retained in the formulation,

Consider the structure to be platelike, so that the component of elastic
displacement in the direction of thickness is independent of the coordinate in
that direction, Iet the direction of ~‘ckness (norm:.al to the plate) be denoted
by the unit vector 7\3. Also introduce a coordinate system r, s, t, with t in

the direction of X, Then internal equilibrium may be expressed as

dx—dﬁio [(VXdP)P Y'} A= ‘/;EO(VP -l-b-{;px:r;
(6. 96)

i

. ° - W
+ BpXVe, +dp = gp)Pads + [ A1 L ds
m



where Pp is the mass distribution per unit area of Sy, end £ is the surface
aerodynamic and thrust stress difference across Sy,

Ignoring the infliience of forces in directions other than the direction of ")'t,

the influence function

}

N1

[} -t
Pernsifa) == .0 (6. 97)

may be introduced so that equation (6. 96) becomes:

L9 xa F1.7 = - -
da-dz°~2[(VXdp)i:=XP] ;)\'“- ;/S.Mr‘a (Vp 0 prr

+ wp X Ve, = 9) Fad r*é:‘,tﬁ,_\as+£ 4,48
m

Sm
(. 98)

-3 -
where: 4, = XL
For free vib "ations equation (6. 98) reduces to

da-da.- '\'/Xdp)~ Xr] A= fl“' .CE}.;AC'S

éa(O)”-[(vw L X7 A =0k [8,Rd

This result may be developed into an eigenvalue problem such that

. 2
w;, tw;, v, =0 (6. 992)
$,. PndS =0 (6. 29K)
Sm ¢
- - -~ 0
‘/S:(T"xéi)'ﬁ./% dS = O (6. 99c)
M

(6. 99¢%
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Letting (6. 100)

d). = é;l‘; ¥ ?
!

&

I

this expression may be introduced into equation (6. 98) to find ,
e

u, = =7, g —‘/srff\ @1£L:l~(vp+w,,x7

+ Wp X Ve, = §p)R,dSdS +£;ﬁA éliéglzdsds (6. 101)

As previously done, use the symmetry of ‘f‘o to write the final two integral
terms as

O - e -
L3l B®  ex B ) [ s, Rt
sh’i SN‘

+f-!a/!" da,Pa dsdS
Sm Sm

Introducirg equation (6. 99a) written as:
[raazas = 28,2 6,00~ LF xF). xF]-3
Sm Aila - w® | *A: A a r=o ]

these two terms beccme, as a conseqguence of the last two expressions of
equation (6. 100),

J‘;-‘/{i'(v" + B XT + Wp XVe,~Gp )R —Ia}{@%(o)
i Jom

e = - - | (6. 102)
+ 3 [(Vx )y oX¥ ] 7\} ds + 2 fsMsbulzdS
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The first integral may be made to vanish as a consequence of the conscrvation

of linear and angular momentum. But one may also let

Ly = 23% + £,

such that:
*% = 0O

£M!1 ds
and:

- -

f(rxz*)- A d5 =0
Sm -

while:

With these substituted into expression (6. 102), the first integral vanishes identi-

cally while the second integral becomes

i}f@ailz 45 = ;",'zf 8a;(2%+22)ds
Sm “VSm

Clearly, this must reduce to:

! i
,;,‘_:f@ai-eads "‘;z/@ai.l;f'ds
¢ Jou ¢ vem

so that:

I -
w? ;/S‘M@;l"’ £32d5 =0

The portion of the surface load represented by I—}‘ is orthogonal to & A" The
resulting internal equilibrium equations are given by

W+ AU = R AM@AL'ZR ds (6. 109
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This expression represents the appropriate form of internal equilibrium. The

generalized aerodynamic and thrust forces represented by

Q: =Y7\.:f b, Lads
Sm

have been shown to be computed from surface aerodynamic and thrust pressures
that deviate from those that just balance the perturbation inertia and gravity
forces. Thus, when internal equilibrium is expressed in terms of free-

vibration mode shapes, the effects of inertia and gravity forces are eliminated,

6.3 Lumped Parameter Representation
of Equations of Motion
In the preceding sections the momentum equations and the internal equi-
librium equation were formulated in terms of perturbation quantities. For the
approximations called large perturbations or small perturbations, the momentum

equations were given by tables 4, 5, and 6.

Internal equilibrium has been formulated as a system of integral equations
that treat the airplane as a continuous body. The kernel functions for these
integral equations cannot be found except for very simple structural forms.
For complicated structures such as that of an airplane another, but equivalent,
approach must be used. This alternate approach is based on the lumped

parameter formulation of the equations of motion.

6. 3.1 Lumped parameters. - The s.cplane is divided into a large number

n of volume elements so that its total volume is given by:

VvV = i V: (6. 104)

¢zl

The mass associated with the ith element is then

(6. 105)
m; = £ /OA aVv



and is termed the ith lumped mass. Its position relative to the airplane c.g. is

S 1 .
rp = = PrrdVv . 6. 106
¢ . Sy, ( )

If the c. g, undergoes the virtual displacement 6F! and virtual rotation
o

650, the position of the ith lumped mass relative to inertial space, i.e.,
[} el
m; ./v:_ A ) (6. 107)

undergoes the virtual change in position. The virtual change is

*'_.__'_ K -~ -~
51 -mifv‘_&(s»z, + 58, X¥)dv

(6. 108)
= ¥, + S XT, .
Now, if the components of 6‘1""- are denoted by the column matrix
S 5L (6. 109)

and the components of the other vectors are similarly written in natrix form:

1" S ¢a

S o =

v; == Hi Sl‘; S ya s_(')_or: s e, (6. 110)
z; & wo

the above expression for the virtual displacement relative to mert1a1 space

becomes, in matrix form,

erf
% Yo
§X; v o o o =z: -y si'
sy; =lo + o -& O X ‘S¢°WG-111)
62; o o0 I y X¢ O 80,
Y.
L5V
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The rectangular (3 x 6) matrix is termed the rigid-body mode matrix of

the ith lumped mass., It is denoted by
O O O Z2; - .,._

!
[qbé] = o 1 o0 -z, 0 X,
0O o | Y -X; o

(6. 112)

and for all masses an airplane rigid-body mode matrix is defined by the
.
[4.]
51 = | [0
¢ - [ ] (6~ 113)
(4]

In conjunction with this definition a (3n x 3n) diagonal mass matrix is

(3n x 6) matrix:

defined as:

Em;] = M m, (. 114)

The matrices defined by equations (6. 113) and (6. 114) may be combined

\

into
M 0 o ©o o o
0 M o o0 o0 o
7 = O 0o M o o o
M =37 ml®]=l0c o o 1. o -1.|@1®
0O O 0 o I, O
Lo o O -Iyz © Ip
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where the moments and products of inertias are only approximate because the
lumped masses are finite and their inertias relative to their own centers of
gravity are neglected. They become exact only as the lumped.masses become
infinitesimals. Also, the moments and products inertias differ for the reference
and perturbation flight conditions because of the perturbation elastic deforma-
tion. This difference is ignored as small, so that ?i in equation (6. 106) is
taken to be the position in the reference flight condition., This approximation is

used throughout the following development.
Now introduce the further definitions

{VP}T = LWV, W, P.g.Y] (6.116)

as the c.g. velocity matrix and

’ T / ,
{rop} = LXOP Y yOP ] ZC')F ) ¢P) ap , WP.J (6. 117)
as the c. g. position matrix.

In cerms of these definitions the momentum and moment of momentum equations
for general curvilinear flight, P> Q. R;) = 0, and small rotation rates

(so products with perturbation elastic displacements can be ignored) may be
written in matrix form as

[M] (’aé{‘ {Vp} + [M.] {Vp} + [Mz] {ré,,}) = [&)]T{p} (6.118)
{F} = LFars foFayy o o oy Fan, Fuy Fag

and where fxi’ fyi, and fzi are the components of aerodynamic and thrust
forces acting on the ith lumped mass.



For large perturbations:

0 Rev) (@) © Wi,
(R,+r) o -(P+p) W, O U,
[M] = -(Q+q) (PR+p) © vV, -U, O
o) (o] 0 A B C
o o) (o) D E F
0 o 0 G H I
O o0 O o g cos 6,
O 0 0 -gcosd,cose, gaing, sin,
_ |o o o cos B, sin 9§, sin €, coz &,
M]= 1o 0 0 %0 7
O O o o (o)
[_o 0O O (o] o}
where in equation (6. 119a):
_— '.-IE IXI"’Ixz(IY‘Ix)
A= | Ll - Ld ](Q' *¢)
B = “IaIxe + Ixe (Ty-1y) P 4 L2 (I - I ) + Ik
L IxI! -~ Ing ) Ix I; - IXEz

_ [raliz-1) + 14
C - L Ix Il - Ixz;_ Q’

D = Ixe(@R+p) | (Ic-~I:)R,
Iy Ty

106

—

(6. 1192)

0000:;3J

(6. 119b)
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Ixs.

F = ~ == (2R +r) +

Iy

(Ly - Is)
Iy

.._Ixa-i + Ix(Iy-Ix)] (Q _’_%)

Ix I’:‘. "'Lc??

(PD+P) .

-Ld + Ix(IY"Ix) Ixa (Ig -Iy) ¢ I
s P. 4
L Isz e I.xe.

I = Ixly - Ixs

_

and, for small perturbations,

-

[m] =

[Me] =

Co0oo0O0O0
Coo090 oo

B O

'
O

O 0O

QOO0 0Coo o

-Ix;_(Ia ‘Iy) + lexa] Q
!

-R Q@ ©
0 -P -W,
P O V:
o o A
O o D
0 0 G

o
-geos® cos 6,
g cos &, en d,

o

O

0

IXI?& - Ixaz

w, -V,
o U,
“U, 0]
B Cc
€ F
H 1
q cos 0,
g sin 0, sin @,
sin ©, cos @,
g sin@cosd
o
0

%] (&

)

(6. 1202)

0000 QO

-

(6. 120b)
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where in equation (6. 120a):

-’Iz Ixe + Ixa(IY"IX) (Q
| IxIz ~ Ix% o

_‘__IzI;(ﬁ + ImeIy“Ix) P +
| IxYz — 1% '

[ I (I= - Iv) + 1A ] R,

Lylp ~Ix=®

_ | Tz (Ta- 1) + Ik
C - lez" Ixza_ Q'
o = Liz(@R+p) | (Ik-Td) R,
Iy Iv
E = 0
F = ~ i (2R +r)+ E-"—:—I—g)--P
Iy ' IY '
G = -1z + Ix (Iy-1x)
I. Iz - 1x§’ Q'
--Ing_ + Ix (IY"'IX) Iz (1o - 1y) + IxIya
H= P 5
L v T IxIa- Ix® Ry
- -Ixa(lz -Iy) + IxIxe
t= i Ix Iz = Ixe* ] «



Finally, equations (6, 118) constituie the laws of conservation of linear and
angular momentum., They are in the desired lumped parameter formulation as

a single matrix equation,

6. 3.2 Internal equilibrium equation in lumped parameter form. -~ The

general equations of motion for the airplane as a body with six degrees of
freedom have been derived in the preceding sections of this appendix. In
addition, internal equilibrium equations were derived using the laws of con-
servation of momentum, the concept of internal stress, and Hooke's law. The
internal equilibrium equations are essentially equations of motion governing the

elastic deformation motion of the airplane.

Those equations are given by:

T~

d-d, -8, x7 =/F£ (R-2 3)av +£ﬁ-hs(?—?s)av
v
o (6. 121)

where the acceleration is

s _ 4%¥, . 4*%® 4%
dte dte dtz (6. 122)

The dynamic effect of elastic motion enters from the acceleration component
a2a/ae?,

Internal equilibrium may be expressed in lumped parameter form by
introducing the following definitions.

The displacement vector field is replaced by the mean value of displace-
ment of the lumped masses given by:

adn ' e
d; = m; VL/OA ddv (6. 123)

Then the column matrix of displacement components may be introduced as:

T .
{d} = L.dxl‘)dgl)da") t dxn)dun, di_"_,_' (6. 124)
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The structt {luence function ?0 is replaced by the matrix [C]. The

c.g. of the airplane is clamped for this matrix to be consistent with the uefinition

of 'f The matrix [C] is of size (3n+ 3)x(3n + 3) and is compoqed of an

(n + I)x(n + 1) array of (3 x 3) submatrices. The 1,]th submau ix is

C xx Cxy Cxw
Cyx Cvy Cvyz

(6. 125)
Cax Czgy Csze

L
A typical element, Cxy, gives the comronent of mean displacement in the
X-direction at the ith lumped mass due to the component of force in the
Y~direction at the jth lumpe_ad mass. The three rows and colums of [C]
corresponding to the clamped point at the ¢.g.contain zeros. Thus the matrix
[C] is singular. The reduced matrix obtained by deleting those three rows and

coluinns is nonsingular. This will be true unless the structure is a mechanism.

The reduced matrix is denoted by [C,] and is (3n x 3n) in size.

The matrix [CO] has an .nverse denoted by
[Co]™ = [Ku] (6. 126)

and is the stiffness matrix for the airplane clamped at its c.g. The stiffness
matrix for the free airplane is

[ka] [e]
[Ka] [Ke2) (6. 127)

[«]

The matrix represented by equation (6. 127) is singular, and the defect is
12] , [K21] , and [K22]. The sub-
matrix [K22] is the force at the reference point due to a unit displacement

removed by deleting the submatrices [K

at the reference point, [KZI] is the force at the reference point due to a unit

displacement at the 1th

lumped mass with all other lumped masses held fixed,
and [K12] is the force at the ith lumped mass due to a unit displacement of

the reference point.



Further, introduce the matrix
T
B} = Lclxo, dgo, d’z;,,exo,eqa, 623—] (6.126)

which is the displacement of the refevence point (€. g.of the airplane beforn

loanling) relative to the c¢.g. of the deformed airplane,

With these definitions plus those of par. 6. 2.3, the exprese r for internal

equilibrium, equation (6. 35), is writien in lumped parameter form as:

for} 181 €63 = = ([0 (55 B} 915 )
+ [‘f’] [M:] {VP} + [‘?5] [Mz] {rQP}J - {F}] (6. 129)

This resul’ is written in perturbation form and holds for lafge and small
perturbat; :iis, depending on the choice of the matrices [M L] or {le

The terms on the right-hand side of equation (6. 129) are a self-equilibrating
system of forces. Hence the total deflection of the structure cannot give rise to
a change in position of the center of mass or to a rotation of the airplane about
its center of mass. Thus, if the perturbation displacements of equation (6. 129)

are multiplied by the matrix consisting of [9] T[mJ, the result must be:

(6] b] {dp} = 0 (6. 130)

Using the definition of equation (6. 128), the matrix {B’r may be determined
to be:

{8} = i [617 [ md [e][Emd (& {95} + [01 37 (v}
+[31 I {ue) + (81 I {ri)) - {¢}] 6. 151)
This result substituted into equation (6, 126) gives
{4} = = (E][Im] (& {oo} +[81 % (v + (01T (v}
+ [8] [ {4}) - {F ]

(6. 132)
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where:

Sl [[I] - [@] [M]"[é)]rfmj] [C.,] (6. 133)

3
The flexibilivy matrix [C] relates the disple~ements of the lumped masses

to the airplane's c.g. The resule of multiplying this flexibility matrix by an
arbitrary set of self-equilibrating forces is a set of displacements that do p:t
give rise to a rigid-body motion of the airplane. A similar analysis is carried
out for the continucuas airplane in par. 6.2.3 and by Bisplinghoff and Ashley in

Chapter 9 of ref. 1. They arrive at the following expression:
G(xy,2; §.M,¢) = Plx.4.2:£,7,6)

l S
ﬂmﬂn(r,s,t;g.oy‘q)/oﬂ(r,s,t) dr ds dt (6. 134)

+—?~".(x'q‘z) X{“?‘l[fﬁ:(h e,t) X3 (ns,t; €7,6)A (v, s.t)drds d‘c]}

However, as pointed out by Milne {ref. 43), this resuit describes elastic
deformation relative to mean axes anc not relative to principal axes as implied
above. However, the approximations in equation (6. 133) lead to coincidence of
the mean and principal axe.

The similarity to equation (6. 133) 1s apparent. ‘i'he structural influence

function Gl is the continuous analog of the matrix [C]. .

6. 3.3 Free-vibration normal mode shapes. - The form for the intern

equilibriu:a eguations given by equation (6. 132) is not the most convenient.,
These are 3n coupled equaticns of motion for the n lumped masses. They
may be uncoupled by introducing a change of variables, and the mathematical
process for doing this for the continuous airplane is contained in the preceding
subsection. An aralogous deielopment is presented here for the lumped
parameter form of equation (6. 35).

Let the airplane be vibrating freely in empty space. The internal equi-
librium equations then reduce to

{up} = ~ [&.] EW‘] 365 {dp} (6. 135)



If the displacement matrix is written as

{dp} = {P}w (6. 136)

L 4
where u is a function time alone and {@} is a matrix of congtants, then

équation (6.135) becomes
{0}u=~[E][m] {¢} U (6.137)
This result separates into two ecuations:
{8} = w*[E] [m] {6} (6.138)
and
u + w'u =0 (6. 139)

where w2 is the separation constant. Physically, « represents a natural
frequency of the free vibration. Equation (6. 138) represents an eigenvalue

problem. The eigenvalues are denoted by wzi, and the eigenvectors by {¢ i}

The matrix [C] is singular because
[€]1[#]=o (6.140)

The defect in [C] is of order six. Hence the number of independent eigen-
values obtainable from equation (6.138) is 3n - 6. This is equal to the number
of elastic diugrees of freedom of an airplane represented by n lumped masses
-that are granted only translation degrees of freedo.~ relative to the center of
mass. These results do not lead readily to a derivation of the orthogonality

properties of {«pi}. The problem must be reformulated in terms of stiffness.

To simplify writing, let

{R} = {Vp} + [M] {Vp} + [M.] {¥ep} (6. 141)

so that equation (6. 129) may be written as
{de} - [81{B} = - [c.] f"‘\;]( {dp} + [ﬂ{R}) +[cJ{F}  (6.142)

and equation (6.118) may be written as

MR} =[6]7{F} (6. 143)
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Equation (6. 142) represents internal equilibrium, while equation (G. 143)

represents conservation of linear and angular momentum.

The internal equilibrium may be expressed in terms of stiffness by multi-
plying equation (6.142) by [K;;] = [(‘»0].1 to find

[k ({e} - [61(8)) = - [m)(p} + [61{RY) » {F}  6.149

If this result is multiplied by (217, the right-hand member vanishes as a
consequence of equations (6. 130) and (6. 143). This leads to

{6} = ([317[kJ [6]) " [817[] {ee} (. 145)
so that equation (6. 144) may be written:

K¢} = ~[m] i} - Pd[B1 R} + () @140

(K= [ - [ B (B ] ) 81 Ikd] 6140
The matrix [K! is singular because
[K][®] = © (6. 148)

but it is a symmetric matrix. The defect in [K] is of order six. Assume

that the elastic motion is simple harmonic, such that

{dp} = -~ w® {dp) (6. 149)

Equation (6. 146) becomes

[K]{de} = w?[m]{dp} + {f} - DJ[F]{R} (6.150

For free vibrations, f#7 -/27/&772# =0 and internal equilibrium is
given by

K] {dp} = w® [mJ{ar} (6. 151)



As previously noted, [K] has a defect of order six. Lquations (6.148) and
6. 151) imply that there are six vectors that satisfy equation (6. 151) with
w2 = 0. These are the six columns of the rigid-body mode matrix [91.

{dp} = {o} =

Further, letting
(6. 152)

where u is a function of time alone, there are (3n - 6) vectors (eigenvectors

{¢i}) that satisfy equation (6. 138) and correspond to (3n - 6) distinct eigenvalues

‘02i. Thus there are (3n - 6) solutions to equation (6. 151) that satisfy

(K] {¢:} = o [m] {0} 6. 153)

The stiffness and the mass matrices are symmetric. It follows from this that

0} B0z - ag) =
and

{8} Em] {6} (i - w5) = c

Define k; and mj such that

)
{¢}}T [:R] {q)«.} = Rz for <=4 (6. 154)
= (0 fFor i #/ [
J
and . \
{o; Imd{o}=mi » =
: . ( (6.155)
=0 s # ¢
}

These are termed the orthogonality properties of the free-vibration mode

shapes f¢.l. A free-vibration mode shape matrix may be defined as:
?i}

[]- [0}, 0.}, {63n-c}] 6. 156
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With this dcfinition, equations (6. 154) and (6. 155) may be written:

[o] K] [¢] = [ K] . (6. 157)

(91" [m] (9] =[m]

(6. 158)

The elastic displacements {dp} may now be written:
e} = [¢] {3 (6. 159)

where {u} is the column matrix of (3n - 6) generalized elastic displacements,
These are linearly independent, while the physical displacements ai\) are 3n

in number and are seen to be linearly dependent in consequence of equation

(6. 130).

The formulation above must be distinguished from an alternate formulation,
appearing often in the literature, that does not distinguish between internal
equilibrium and conservation of linear and angular momentum. The equaticns
of motion are initially written in terms of the positions of the lumped masses
relative to an inertia reference system. The connection between the two
formulations may be demonstrated by noting that {r'p} defines 3n components

of displacement relative to inertial space; hence,
{re} = (8] {re} + {ap} (6. 160)
and it follows from equation (6. 159) that:
{re}=[0]{res} +[P]{}
_lraqt {Y‘I’P}
=[e1 el § (5

=[6:145r}

(6. 161)



where:

(6 = [161100]]

(6.162)

fe)=q i
T {u} (6.163)
From the foregoing it follows that the eigenvalue problem represented by
equation (6. 151) may be replaced by
' 1
ol 0 2 [M]l

[x]{ed = ”O“EEKj {6} = w?® |~ hﬂf;ﬂj {¢,} (6. 164)

This formulation introduces the rigid-body degrees of frecedom into the problem.
The matrix [K,] has zeros in its first six rows and columns. The first six

scalar equations coniained in equation (6. 164) may be used to write

[}
This represents the perturbation equations of motion of the airplane as a rigid
body in free space wi.hout reference motion. I appropriate forces are added
to the right-hand members of these equations, the result may be made to
correspond to small perturbation equations of motion for an airplane in steady,

rectilinear, level tlight,

Equation (6. 164) was introduced to emphasize the distinction between the
formulation of internal equilibrium, equation (6. 142), and flu.ter problem
formulations. In a flutter problem formulation the displacements {dp} in
equation (6. 142) are directly replaced by {r'p}, i. z. perturbation displacements
relative to inertial space. Also, the stiffness matrix [K;;] is replaced by
the stiffness matrix [K'] given by equation (6.127). This distinction must be
clearly recognized to avoid confusion. Rigid-body motions are not usually
included in a flutter analysis. The defect of order six in [K'] gives rise to
six zero values for eigenvalves corresponding to the rigid modes [?];thecorre-
sponding generalized coordinates, however, are given by {B}. Motion which

might be tev " ~igid-bcdy motion is the motion of the structural reference
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point relative to the airplane's c.g. In many cases the characteristics of that
motion are nearly identical to the characteristics of the airplane's rigid-body

motion. This tends to obscure the distinction between the twq forinulations.

i Internal equilibrium equations appropriate to the conapletely elastic airplane
may now be obtained by introducing equation (6. 159) into equation (6. 146) to
find:

K] [9]{w} = ~[m ][9]} - D [014R} + {f} .109)

This expression may be premultiplied by [¢] T, and equations (6. 157) and
(6. 158) may be used to find

T~

[ i} + [R1 ) = [017(R) €190

These internal equilibrium equations are uncoupled in the left~-hand member,
The right-hand member represents generalized aerodynamic and thrust

perturbation forces:

{e} = [‘P]T{_F} (6. 167)

Thus it is seen that Qj is a "force' acting on the ith free-vibration mode shape.

6.3.4 Generalized perturbation aerodynamic forces. - In the preceding

subsection the internal equilibrium equations were transformed by introducing

free vibration modes. The result given by equations (6. 166) and (6. 167) is

ER{u} = ~ [3 () + {@) 6169

The genaralized aerodynamic forces were obtained from the aerodynamic
forces on the lun + ... masses, i.e. {f} The aerodynamic pressure at the
-\
surface of the airplane is represented by the vector F in the continuous

representation of the internal equilibrium equations. Considering only the



perturbation part, the components of the perturbation aerodynamic pressure

force on the ith lumped mass are given by

Fr, = T Fe(F-f)av °
Py, "‘ﬁ ;-F s(F-7)av b (6. 169)
in:J\:‘_k'F S(F—?:‘}dv }

For an inviscid fluid the pressure is in the direction normal to the surface

denoted by 1. A mean normal to the surface may be defined by:

- } - - -
no= g ‘/\;n 6(r ~rs)dV (6. 170)

Hence the column matrix {f} may be written:

{7} = - ()

and the generalized aerodynamic perturbation forces are:

(0} = - [#17em) .17

As a consequence, the generalized forces may be ohtained from aerodynamic

influence coefficients. It is shown in app. B that

{r} = - {pd}
= [A] {ve} + [pa]{Vp} + [As] [0]{}
+[ad01{8} + [As] (214

where the matrices [AI], [Az], [Ag], [A4], and [Ag] contain the aero-

dynamic influence coefficients and certain aspects of the airplane geometry

(6. 172)

in lumped parameter form,
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6.3.5 Equetions of motion for completely and equivalent etastic airplanes

in lumped parameters., - This subsection is essentially a summary and

compilation of the preceding. All the formulation of the equations of motion
for completely and equivalent elastic airplanes has been carried out., The '
central results are the momentum equations and the internal equilibrium

equations.

The momentum equations were combined into a single matrix expression

for either small or large perturbations:

(M3 () + M)} + D) = 81747} @ama

As shown in app. B, the perturbation aerodynamic forces are:

{F} = [7J{ve} + [A){Vp} + [As) {dp} + [Ad R} + [As){dR} (6.179)

Also, the internal equilibrium equations were given by equation (6. 132), i.e.,

{op} = ~[21[Em] ({&e} + [31 {06} + [8] [MI{ve)
+ [8) ] {ro}) - {F1)

This set of equations represents the equations of motion for the completely

(6. 175)

elastic airplane. The airplane is taken as n lumped m-:ses, and the effects
of rotations of the lumped masses about their centers of gravity are ignored.
Thus each lumped mass has three degrees of freedom; these are three
translations relative to the c.g, of the airplane and the mean or principal axis
system. These are (3n - 6) degrees of freedom (termed elastic degrees of

freedom) tiat enter the problem through the elastic displacements {dp}.

There are three translational and three rotational degrees of freedom for
the airplane as a whole. Thus, in total, there are 3n degrees of freedom,
and the above equations are 3n in number. They are therefore a determinant
set of equations.



The equivalent elastic airplane formulation results by neglecting the
generalized inertial forces [m] {c.h.)} and the aerodynamic camping and inertia
of the structural motion [#] T[A4] {ap} and (91T [45] {dp}. . Equation (6. 173)
}‘emains unchanged except in the expression for aerodyanamic perturbation

forces. The internal equil brium equation becomes

e} = ~ [ [ImI (62( {0} + M1 {4} + D] i) - {))) o100

Combining equations \J. 173), (6.174), and (6. 176) results in the equation of
motion for the equivalent elastic airplane:

[M{{e} + ] + v e = BT[[5] - (2] [€]] A1 66
+ B[ - ) 1] {0} - 87" [[00- Pl Tl D Il 6160
- B[ - (a1 (E)] " [pad [e] Dmd (3] 0] €2 ©.179)
-6 P[] [as) (61 £ [6] [ma] {2

The first two terms on the right of équation (6. 177) contain the aerodynamic
stability derivatives. The effect of elasticity is introduced into those stability
derivatives by including the factor

[[x]-[ws1 1]

If the airplane is taken to be rigid, thz flexibility vanishes and the first two
terms of equation (6. 177) reduce to the stability derivatives for a rigid air-
plane, The final terms of equation (6. 177) contain stability derivatives related
to inertia and gravity force perturbations. These terms vanish for a rigid air-
plane, e.g. for a rigid airplane or a completely elastic airplane the stability
derivative CLe does not exist.
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This stability derivative is present, however, in the equations of motion of
an equivalent elastic airplane. It arises as a result of the change in direction
of the gravity force vector relative to the airplane in going fr9m steady-
reference flight to perturbed flight. This introduces a changé in airplane
shape, hence a change in aerodynamic forces. This does not occur in a rigid
airplane. In a completely elastic airplane formulation, all elastic shape

parameters are held constant during a § perturbation.

8.3.6 Residual flexibility. ~ The equivalent elastic airplane has six degrees

of freedom, and the perturbation equations of motion are very similar to those
used to describe the perturbation motion of a rigid airplane. The sole differ-
ence between perturbation equations of motion representing a rigid airplane

and those representing an equivalent elastic airplane is in the stability deriva-
tives, Those for the equivalent elastic airplane contain a correction that adjusts
the stability derivatives of the rigid airplane to account for the quasi-static
elastic deflections of the equivalent elastic airplane. For the completely elastic
airplane, additional degrees of freedom are introduced to describe the elastic
motion arising from structural dynamics. The method of residual flexibility
leads to perturbation equations of motion that combine features of both the
equivalent elastic and completely elastic representations. The “esult is a set
of perturbation equations of motion that lead to a mors accura'te evaluation of
the motion of elastic airplanes than muy be achieved by either the equivalent

elastic or the completely elastic perturbation equations of motion.

Consider the manner in which the elastic airplane is represented. Although
it is a continuous body, for computation it is approximated by a large number
of lumped masses suvbject to asrodynamic forces and connected by the elastic

structure.

In the equivalent elastic airplane, the only inertial forces considered to
act cn the lumped masses arise as a consequence of accelerations of the air-
plane's ¢. g, Thus the deflected shape of the airplane at any instant is due
entirely to ti.c applied aerodynamic forces and the inertial forces resulting
from motion of the airplane as a rigid body. This representation neglects all
structural dynamics, i.e. the inertial and damping ferces due to motion in the
elastic degrees of freedom.



The differences belween the equivalent elastic and completely elastic air-
plane representations mo- he illustrated by a siniple example, Consider an
airplane clamped at its piaae of symmetry, as shown in fie. 1. The airplane is
subjected to a sinusoidally varying force of frequency « at its. wingtip, The

deflection of the tip for the equivalent clastic airplane is given by

= :
A = “R“ P. sin wt (6. 178)

where K is an elastic constant representing the effeclive stiffness of the wing,
Under these condilions, the deflection is always in phase with the load and in
constant proportion with the load, When the load is aerodynamic, vhe problem
is complicated by the fact that the load is droendent on the deflection, However,
this complication does not ctange the essential features illustrated by the

example,

When the airplane is completely elastic, the inertia force ™ rust be
included (where M is an effective mass of the wing), A differeniial equation
now governs the elastic deflection, i,e.,

MA + KA = P, wt (6.179)

This differential equation is solved by

o . w
D= P gz(sm wt ~ 2 sin w,t) (6.180)
w4

o

where ¢dp =Y ,KK.Z_,the natural frequency of the wing.

Note that, as M - o, W, — O and the soiution tends toward that of the
equivalent elastic airplane. Consider what happens when wy = 2w. In
this case,

3 ' : y k
A = 1.32 - P sinwt —2 sin2wt; (6. 181)
The deflection now exceeas that of the equivalent elastic airplane and is no

longer in phase with the applied load, The exces. .ve deslection i raferred
to as "dynamic overshoot,"
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The effective mass and effective stiffness of the wing depend on the
deflected shape., For a continuous wing there is an infinite number of free
vibration shapes and associated natural frequencies. However, with the wing
represented by n lumped masses and considering motion only in the direction
of the applied load, the numbher of free-vibration mode shapes and frequencies
is n, These may be denoted by

w; =1 (6.182)

where: .. hatural frequency of ith
* 9 free-vibration mode shape

Ki = effective stiffness of ith free vibration mode shape
Mi = effective mass of ith free vibration mode shape.

The deflection of the ith mode shape is given by

_ Ri
Ai = 'IZ: P.;-—E(SIVI wt——"San’t) (6.183)

w?—

where Ri is the participation factor for the ith mode with P o and the total
deflection is

>
i
.M:

.,
[
~

A (6.184)

Now assume that the first five natural frequencies are oi the order of
magnitude of the frequency of the applied load and that all the remaining natural
frequencies are higher order frequencies. Then one may write

5

] R; . w

Y — —_— - — s ;
A gKiP, T _u_{; (snn wt o Slnw‘t)
“wh (6. 185)
n
+3 KL P sin wt
£=6 ¢

That is, the total deflection is the sum of a dynamic part and an equivalent
elastic part, The latter portion, due to the higher order free-vibration mode
shapes, is referred to as the deflection due to residual flexibility.
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Recall equation (6.146):

] {de} = ~[m] {EP} +{¢} = [m] [(3]{R} (6.146)

_ Introcucing the free-vibration modes from equation (6,152) on the left-hand
side of equation (6,146), premultiplying by [@]1 , and using the orthogonality
relation equation (6.156), resulis in

1T HW = ©@17(- ) Gt + {F)) e

The diagonal generalized stiffness, equation (6.157), may be introduced to

ER1G) - (o (-Emd@ + 1)

To introduce the concept of residual flexibi. .t~ sonsider the partitioning:

@1 = [[ed} (4] 62189

find:

It then follows that:

C[R] = [[‘7’-1;] [x] [[Mi[q, ]} - L_EEQ_E_[?_]_}

[¢7.] (6.189)
and

v—

= [#J{w} + [42) {uz}

o) - [} ) {5

In terms of these partition matrices equation (6.187) may be written:

- «] _[RIi01] |16T .
1Ch {} - {"Eél"'fﬁzj‘_‘ {téﬂ (na e} + ()

f (6.191)

(6.190)

Premultiplying equation (6.191) by [¢] leads to:

(or} = ([P1TRTTOT+ [ IR )(-m] G} + ) oo

The equations of motion in terms of the flexibility matrix [¢]were given by
equation (6,132), Comparing equations (6.132) and (6.192) we see that

[ 03 [0 (-Im] {95} + {)) = ([€1- W1 LRI [67) (- Im 3}« £)
- [E1EmI [B1{R}

(6.193)



Introducing the definition

[&] = [€] - [ (R @109

it follows that: <

LG T LB ] (52D (- Eo 27855 § v 857 )= CI-Lor27 {2

t I ) - LE) o2 L BT 128 (6. 195)
This result is used later in the discussion to avoid the necessity of determining

the free~vibration modes [¢ ol

The term "residual flexibility" follows from the definition of equation {6.194).
The "residual flexibility" of the structure is found when the flexibility associated

with the generalized elastic displacements of the dynamically included modes,
{ ul}, is subtracted from the total flexibility of the structure [C], Howaver, it
is important to recall that the flexibility represented by {Cl is different from
that usually termed the flexibility of the structure. It is defined by equation
(6.133) as

(1= [[x] - [# (M) ' [8]" ] [c]
: (6.196)

Even through the matrix [CO] has an inverse defined as [Kll . the flexibility
matrix [C] does not possess an inverse, When multiplied into a set of self-
equilibrating froces, [C] yields a set of meaningful deflections. ‘However, the
first column of [C] cannot be regarded as the structural deflections resulting
from a unit load applied at the first structural mode, as in the case of [C0 L

The formulation of the equations of motion for residual flexibility results
by assuming that the inertial loads represented by DVIZJ{uZ} are small enough
to be ignored, The only intrinsic structural effect that resists the deflections
{uz} will be that represented by the residual flexibility,

The above result is incomplete because no consideration has been given to
the dependence of the aerodynamic and thrust peturbation forces {£} on the
elastic displacements. Recall equation (6.172), i.e.,

{F} = [AJ{ve) + [A) {06} + [As) [4]{u}
+[AJ[0){u} + [As] [81{0}  6.199
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Intvroduce the partitioned mode shape matrix and write equation (6,197) as

{F} = [A1{) + Dl ) + (21| [0+ [4(}
+ (A [0} + [ [8](00)

. . (6.198)
+ [AS] [¢1] {U. :} + [ASJ [¢z} {u z.}
For the residual fl:xibility formulation, let
[As) [62] {2} 2 © (6.199)
and
A T, s
[As] [@aj{iiz} = © (6.200

so that equation (6.198) may be replaced by the approximate relationship

{F} = (A1} = [Ra] {0} + [As] [0 {0} + [Aa] [4e]{uws}
+[pg][A1 40} + [as] [90{4}

(6.201)
Expand equation (6.191) for {up }using equation (6.154) and
[m2] {uz} ~ O
with the result
 melpg AT
{u:} = [RD7'[42)'{F} 6.209

Similarly, using the same approximation as above, equation (6.195) becomes

[0 R [817(F) = [€1[-Dm1 (00403 + {51 ]
- [€][m] [61(R} (6.203)



Combining equations (6.201) through (6. 203) results in
(6} = {000 [ (6] [Ta0en + Tad 008} + [nd] 1)
- ] ([C] [m] [@I{RY + [E] EmI [6]{it} ) (6. 204)
+ P [B1{a} + [ag (8] (kY

Equation (6.204) describes the perturbation aerodynamic forces acting on the
airplane in the residual flexibility formulation, It is now necessary to obtain
the appropriate form for the internal equilibrium equations, Recalling equation
(6.146), one may introduce the partitioned mode shape matrix of eguation (6. 188)
to wrife:

[x] [[edi e {{ }} = - pm[[edifed] ﬁ;“;} ~[m) 614~} + £F)

(6. 205)

" Premultiplying this expression by the transpose of the parfitioned mode matrix,
it follows from equation (6. 155) and equation (6. 167) that:

R} = -[m]{i} + {o} (6.206)

{o} = [¢’,:|T{F}. (6.207)

Equations. (6. 118), (6.204), and (6. 206) represent the equations of motion for

the residual flexibility representation of the airplane. Their expanded forms are:

[ () + (v} + ) = [8T7 [ 123 - Pl (e [ M1}
+ (A (0} + [ (01 {u} - (] [CATmI[0] (0} =
- () [€1Em I [8] (6] + IMJ{veY + [Ma] {ri})
+ [A4] [q}-]{‘:"} * [AS] [Q).] {“'}] (6.208)
Cad (i) « R} = (82700 sl ea] " [Tad )
+ (A {05} + [pa] (814} - [od] [ Emd (01 {0
- EE1Emd 9 {008) + (3%} + (364d) g ey
+ ([0 (i} + [ [0 {ii} ]
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The similarity of the rigid-body equations of motion for residual flexibility,
equation (6,208),to those for equivalent elasticity, equation (6,177, is appurent,

If all elastic degrees of freedom are treated as quasi-static, then

] —L&]
and equations (6,177 and (6.208) are identical. Also, since the rigid and
completely elestic airplane formulations may be obtained from equations (6.203)

and (6.209), this set of equations is clearly the most general form, Further,
if [C] = o,

] (3% (v} + [ J{vo) + Bna)(s))
(6.210
- G(B B )

These are the equations of motion for a rigid airplane,

6.3.7 Potential application of residual flexibility theory, - The potential

application of residual flexibility theory by stability and control engineers may
be discerned by considering certain practical aspects of the preceding analysis.
This subsection poinis out those considerations.

The completely elastic airplane representation is the most precise math-
ematical model for assessing the dynamic stability of an elastic airplane,
However, the limitations of computers that will be available in the foreseeable
future for carrying out the numerical computations forbid its use, These
limitations are a consequence of the large number of elastic degrees of

freedom involved in adequately describing the elastic airplane,

A discussion of the number of free-vibration mode shapes required for
the airplane's representation is included in app. C. In that discussion it is
pointed out that the stability and control engineer is usually concerned with
dynamic participation of only a small number of vibration modes, This
follows from the fact that he is primarily concerned with the six-degree-of~
freedom motion of the airplane c,g. A free vibration mode participates
dynamically with the motion of the airplane c.g. if the natural frequency of the
free vibration mode is nearly equal to the frequency of the c.g. motion, The
stiffness and mass distribution of most airplanes is such that only a very few

free vibration modes have natural frequencies low enough to participate
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dynamically, However, there is quasi-static motion, duc to the higher fre-

quency modes, that can have a significant effect on airplane stability and control,

Without the residual flexibility formulation of the equationg of motion, the
stability and control enginecr is faced with two alternatives, He may include
the frec vibration modes that contribute the major quasi-static elastic deflec-
tions as dynamically participating, Or he may ignore all structural dynamics
and basc his stability and control analysis on the equivalent elastic airplane
representation, Either choice carries a penalty, In the first case, numerical
accuracy is lost because of the complexity of the equations of motion, In the
second case, the mathematical model does not accurately represent the air-
plane, Residual flexibility theory provides a middle ground between these two
alternatives, including the quasi-static deflections of all elastic modes that
do ot participate dynamically, Thus residual flexibility theory may be
expected to give optimal accuracy in predicting dynamic stability of elastic

airplanes.

The sole difference in the equations of motion introduced by including
residual flexibility is seen by examining equations (6.208) and (6.209), This
difference is represented by inclusion of the square matrix as a factor:

- E-pIRIE)] e

where . \ accordance with equation (6.189):

[k = @] [K][3)] (6.212)

All the matrices contained in this factor must be available for the analysis
neglecting residual flexibility., No new information is required, However, the
computation of the factor involves the inversion of a matrix of large order.
This appears o be the only drawback associated with residual flexibility theory
but it seems to be adequately offset by the advantages,

6.3.8. Connection between equivalent elastic airplane stability derivatives

and completely elastic airplane stability derivatives, - This section discusses

the difference between the stability derivatives appearing in the equations of
motion for completely elastic and equivalent elastic airplanes, The theoretical
basis of this difference appears in this section and in app. B.
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A previous discussion at the beginning of par. 6.3.6 illustrates the
motion due to elastic deformation of an airplane for simple loading, This

motion was shown to be different for the two airplanc representations, It is
this difference in the elastic motion which leads to the differe&ces in the
stability derivatives appearing in the equations of motion for the two cas~s,
The difference in the elastic motions arises as a consequence of the inertial
and damping forces generated by the elastic motions, These forces are
neglected in the case of the equivalent elastic airplane, In that case, the
elastic deformations are in phase with and in constant proportion with the
loads causing the deflections, For the completely elastic airplane, the
inertial and damping forces generated by the elastic motion lead to dynamic
overshoot (nonconstant proportionality) and a phase difference between the

time of maximum deflection and maximum applied load,

Recall the general form of the equations of motion given by equation (6. 118):
° ‘
() 5% € + BA10D e + IMI MGt} = B1T{]} g,

The motion variables are the elements of the column matrix {Vp} as given by
equation (6,116), They consist of the three components of the perturbation
translational velocity of the c.g. and the three components of the perturbation
rotational velocity of the airplane about its ¢.g. The first two terms on the
left-hand side represent the perturbation inertial forces on the airplane, The
final term on the left is the perturbation gravity force, The right-hand term

is the perturbation aerodynamic force,

For a rigid airplane, equation (6.213) may »e brought directly ii..o the
form of the equations of motion given by Etkin (equations (4,15, 7) and (4. 15,8),
ref, 4). This is done by introducing the stabil:ty derivatives for the rigid
airplane and neglecting some of them in accordance with the development of

ref, 4.

For the completely elastic airplane, additional motion variables must be

introduced to include the elastic motion, These enter equation (6,2138) through



the right-hand term, To sce how that occurs, note that the periurbation
aerodynamic forces on the airplane panels are given by equation (94) of {he

summary report as: .
»

{Fa} =3, [A) Qe+ g A1 (e} + 3,1 [2[r)
+ M. ]U%} [ZEAT, + M, [aAT H{WT}}

In keeping with the concept of a stability derivative, al' the perturbation
variables except one must be set equal to zero in equation (6,214) in order to

compute the "stability derivative'' corresponding to the nonzero variable,

(6.214)

Thus the appropriate equation for the quasi-steady aerodynamic perturbation
forces due to elastic perturbation deformation is obtained with u/U1 = 0 and

is given by:

{Fa} = 9 A] @’P}. (6.215)

where the perturbation flow incidence angles are functions of the perturbation

elastic deformation only. Following the development of the preceding and the
summary report, the perturbation elastic deformation is represented in terms

of the free-vibration mode shapes of the airplane. The components of elastic
rotation at each panel, dEi, dEi’ and '/’Ei, defined in app. B, may be computed
from each free-vibration mode shape. Denoting some arbitrary free-vibration

mode shape by a, the elastic rotations due to a unit amplitude for that mode shape

are denoted as dEl , 9F1 , and 'l/[zl One may then construct column matrices
Y
{9)’ E}a ¢E o Wthh may be regarded as the mode shapes themselves.
Fui'ther, in accordance with app. B, it follows that

(v}, = [wl {7, + Cyod {ocfu + (¥ {Wele

(6.216)
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Letting the amvlitudes of the free-vibration mode shape be given by ugy
for the arbitrary mode shape denoted by{?elv , the flow incidence angle changes
for that mode shape are given by :QEga u,. Now, inaccordance with equa-
tion (6.215), the perturbation aerodynamic forces on the panels due to u,, are:

{"f’f} = é:.ﬁl]{gfﬁ’}o( 2o,

(6.217)
These forces are directed along the normals to the panels, A matrix [n] may
be defined as: [Ny, 7]
T\\hn
nj= =
[n] ",
Ny, . (6.218)
so that: )
{F} = [n){n}
(6.219)

where {f} is the matrix of components of panel perturbation aerodynamic

forces defined by equation (6.118). It follows that:

87 = 3, [nllAJ{ ¥ty 2 (6.220)

Finally, in accordance with the right-hand term of equation (5.213), the
perturbation aerodynamic forces and moments on the airplane due tou are
found as:

g, [ I nTATE ¥, 2

where, for example,

’e\’ = .é; {/} T[Wz]@/]{%}x 2’&: (6" 221)



and

my = () D0 663 Do) [ D0, v

(6.222)
The "stability derivatives" consist of the multipliers of w,, in a non-
dimensional form, Thus, continuing with the examples,
Cro, =Tz o= = == {1V IR
u'd q.. SW [ L{OC SV\I’ X 1 y/E K (6. 223)
and 2 omy 2 T T
Cme, = g5sz Sue = vz (23T~ 0} Tnel) ()
(6.224)

Now consider the equations of motion associated with the elastic motion

that were derived in the preceding. These are:

[ 2 {u} + (R} = - [17 M3 18] (53 {vs}
+ ] {ve) + [ (e} + [0]'{F} .22

where:

617 mJ[9]= o

(6.226)
because of orthogonality of the mode shapes. Thus,
[4372: feck +LRIEud <L AT 07
2t? (6.227

The first term represents the generalized inertial forces associated with
each motion variable representing the elastic motion, The term "'generalized
force" is appropriate because the use of free-vibration mode shapes has
introduced a transformation to the generalized coordinates u,. The second
term involves the generalized stiffness of the airplane structure. The right-

hand term gives the generalized aerodynamic forces,
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The stability derivatives give the change in the aerodynamic forces and
roments acting on the airplane due to small changes in the molion of the
airplane. Different stability derivatives must be used, depend_ing on
whether the airplane is considered completely or equivalently elastic,

The matrix [#] is defined by equation (6. 149) as the matrix of free-
vibration mode shapes. If §u, is taken to be a virtual change in the ath
elastic generalized coordinate (elastic motion variable), premultiplication
of the right-hand member of equation (6.159) by {6L1}T gives the virtual
work of the aerodynamic forees in a virtual elastic deformation of the

airplane, i.e.,

vivtual work = {524 7¢] T[f’ Y3 (6.228)

The first column of [¢], denoted as {ﬁ}l of equation (6.149), gives the
displacements of the panels due to a unit value of uy. Thus { g }1 T{ F} is the
force that does work in the displacement of the first mode, It appears appro-

priate to define
s
O ={#3, {53
(6.229)
as the force associated with an arbitrary free-vibration mode shape.

Recalling equation (6, 220), the aerodynamic force component matrix due
to the elastic deformation is:

2= g, [727[AJ[ % Jf =}

where the rectangular matrix [$5] has columns in accordance with equation
(6.219):

(6.230)

/4] =172 F%3, - -/ (6.231)



Alsio recall equation (152) from the summary i‘eport, which gives the

servdynamic pressure forces due to motion of the airplane:
(e} = [P} + N 2 )+ DI+ Bl e 0+ B 25 {0}
(6.232)

Consider only the first and third terms for simpiicity. This expression can
then be written: *

{ea} = g, [AJ [Gd{ve} + g, [A] [G.){up}
(6.233)
using the notation of equations (151) in the summary repoxrt,

The matrix of aerodynamic force components arising from perturbation _
elastic deformation as well as perturbation motion in the rigid-body degrees
of freedom is given by equation (6.233). Comparing the matrices appearing

in equation (6.233) with those of equation (6.230), it is possible to write:

{¢} = 3.[n] ( (A Del{u} + [n] [e2] {V"}> (6.234)

Finally, this result may be introduced into equation (6.229) to find the
component of force in the "direction" of the arbitrary free-vibration modc
shape:

@ = & 103 End ([ ¥l {1} + (A (-] (v)

(6. 235)
The "stability derivatives' for elastic motion may now be found as
| S Q«
C = =
) 30, _ U, EYo) (6.236)

C = - = e
Qg g, Sw dx Sy w

and so on.,
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Using equation (6.229), the equations of motion for elastic deformation

are given by

L5775 2R + LT f7R =@
(6.23%

e

However, it has been shown by equation (6,235) that this may be written:

LA U +LETLUE =G, Sup ([ Cooo TL2#F+[Cor, 7 147)
(6.238)

Unsteady aerodynamics and aerodynamic effects of displacement rates have
been neglected so that there are no generalized damping forces contained in -

equation (6.238),
For the equivalent elastic airplane, the generalized damping and inertial

forces are set equal to zero in equation (6.238)., The resulting expression

may be solved for column matrix {u} to find:
(6. 239)

$2F=[TET-4, 5 [ Concl] (Cary TE1F

This result may be used in equation (6,235) to find:

{£7= g, [PJJATIRT~ & SulCouslf o (e TR
' (6.240)

This result may finally be introduced into equation (6.213) to find the

equations of motion for the equivalent elastic airplane.
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7. STATIC STABILITY CRITERIA

7.1 Introduction R

The purpose of this section is to derive and discuss the static stability

criteria for an elastic airplane., These criteria will be shown to follow logi-

cally by examining the definitions of the words "static stability" and "static

stability criterion" and then applying these definitions, The definitions are

intended to provide a precise basis for the ensuing discussion:

Static stability is here defined as the tendency of the airplane to

develop forces or moments that directly oppose wn instantaneous
disturbauce of a motion variable from a steady-state (i.e., equilibrium

or trim-state) flight condition,

For example, when the nose of an airplane is raised relative to the
flight path and as a result the airplane develops a nose-down moment,
the airplane is said to be statically stable for such a disturbance.

Static stability criterion is here defined as a rule by which steady-state

(i.e., equilibrium or trim-state) flight conditions are separated into

the categories of stable, unstable, and neutrally stable,
In another context, the term has been used as a requirement for an

arbitrary minimum static margin. For example, the military speci-
fication for flying qualities (ref. 10, par. 3.3.1.1.) requires a negative
value of Cmu at all times, which implies a positive static margin: In

still another interpretation,.the civil airworthiness requirements (vef. 44,
articles 4b. 151-155) associate stability criteria with stick force versus

speed behavior.

The reasons for defining static stability criteria in the form given are

these:
.

The definitions are clear, Judgment and opinion are eliminated as
factors,

The definitions lead directly to important aerodynamic derivatives
and show how these are related to the static stability behavior of the

elastic airplane,
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Note that these definitions are largely independent of notions of stability
and stability criteria associated with control force or control surface displace-
ment, Specifically, this report does not deal with: R

e Stick-force stability involving svrface hinge moments.

e  Stability as affected by the feel system, including bobweights

e  Stability augmentation systems in general.

It is recognized that when control surfaces are allowed to float or when
springs or other devices are added, the longitudinal stability derivatives and
associated control characteristics can be significantly affected. Such effects
have not been discussed directly in this report; however, the discussions on

the effects of derivatives are applicable,

The steady-state motion of an airplane was defined as that motion for
which speed V‘c, rotational velocity @, and elastic displacement field a.\
(exterior shape of the airplane) remain constant with time in a body-fixed
axis system (X,Y,Z.). (See fig. 4). Relative to the inertial reference system
X!Y;Z2"), the steady-state motion at any time t is completely described by

-, S
the quantities %, , W,, &, and o

In more common language, steady-state ﬂig‘ht is defined as having con-
stant speed, constant rotational velocities, and constant load factor. This
type of flight is frequently encountered in straight and level cruise and in
steady turns, For the elastic airplane, it is also required that the exterior

shape remain constant in steady-state flight,

-\
The momentary position of the center of mass in inertial space, r:)]: is

not important for calculation of stability behavior,* The state vector com-
ponents, X.', Yl" and Zl" will therefore not be included in stability consider-
ations, and neutral stability with respect to changes in these mot.on variables
is accepted. A similar statement can be made with respect to heading angle,
\Ill, aititude angle 91, and bank angle @1, which are needed to describe the
steady state for zero rotational velocity‘a‘)\l. In other words, neutral stability

is accepted also with respect to ¥, 6, and &,

*There is a small exception in that the atmosphere is not homogeneous, which
means that density is a function of Z' ., In discussions of static stability, this

fact will be ignored,
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The state vector (i, e, the steady-state description) of the airplane for

discussions of stability is therefore defined as having the components Ul’ A%
-
d..

1!

Wl’ Pl’ Ql, Rl, and components of 1 Disturbances from t}le steady state
are described by the componentsu, v, w, p, 4q, T, ar;d components of
-\
d.

|y

Kolk (ref, 16, p. 2) states that stability "can be defined along and about all
axes, and in respect to any parameter one may choose," In applying the
definition of static stability here, the "tendency to oppose disturbances" is
judged in terms of the instantaneous force and moment behavior of the air-
plane to disturbances from a steady-state flight condition. In determining
which combinations of forces, moments, and disturbances are to be singled
out, the following arbitrary rules have been followed:

© Velocity disturbances are initially opposed only by forces.

¢ Rotational velocity disturbances are initially opposed onl¥ by moments,

e Angles of attack and sideslip disturbances obtained by interpreting the

velocity disturbances v andw as 8 zV/Vcl and a= w/Vc1 are

initially opposed by moments,

By consistently applying these rules and the definition of static stability
to the instantaneous force and moment behavior of an airplane, criteria for
static stability evolve, The results are stated in table 7, An airplane will be
considered statically stable in a motion variable if it satisfies the correspond-

ing criterion of table 7.

Neutral and unstable criteria follow by deduction. For convenience, each
static stability statement in table 7 is accompanied by a statement involving

the most important derivative in each case.

Note that the criteria of table 7 are equally valid for both rigid and elastic
airplanes. In the formulation of the inequalities of table 7, the behavior of the

structure is not important except that structural stability is implied.

Notice also that the ~riteria expressed in table 7 are expressions of local
slope behavior., For that reason they also apply to situations where aero-
dynamic forces behave in a nonlinear manner, This is important because
airplanes in many instances do behave in a nonlinear fashion, Typical examples

are stall and pitchup,
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Even though the static stability criteria of table 7 evolve from the defini-
tions and rules selected here, there is a wide variation in importance among
the ten criteria tabulated, For example, BMY/ da (~Cmy) 1,? of much greater
practical importance than aFY/ oy (~ CYB)

Note that under the adopted definition of static stability, the partials
BMY/au (~Cm,)) and BMX/SV (~C'QB) do not belong in table 7, This implies
that for static stability under the current definition, the signs of Cmu and
Cy 8 are not important, However, these derivatives are important in the
practical case and will therefore be discussed,

An unusual feature of table 7 is that it includes moment derivatives with
respect to rotational velocities, Such derivatives are normally associated
with dynamic stability and not with static stability, The reason for their _-:
appearance in table 7 must be found in the definition of static stability., The
physical justification for including these moment derivatives in static stability
considerations is that steady-state flight can actually involve constant rota-
tional velocities,

An important point is the following: table 7 merely states the conditions
necessary for static stability as defined herein. This does not imply that
static stability is or should be required. Whether or not static stability with
respect to a particular motion variable is desirable is a question of handling
qualities, It is not the purpose of this report to deal directly with this question,
However, there are significant connections befween handling quality parameters
and static stability criteria which will be pointed out,

7.2 Static Stahility Criteria for Speed Disturbances

7.2.1 Forward speed disturbance, -

Criterion 7,1
From table 7, an airplane is statically stable for a forward speed

an<O

disturbance u if:

The physical meaning of criterion 7. 1 is that, as a consequence of an
increase in forward speed u (along the X-axis), a force must be generated that
opposes the increase in speed,
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The consequences and significance of criterion 7, 1 will now be examined

in detail, In slability axes:

Fxg =FAx5+ F'rxs = Cxg g Sw 4
=(CTee - Co) § Sw (7.1)
Application of criterion 7,1 yields:
- 2
(Cszu CDU_) + (Csz“" CD\) \7:; < O (7.2)

If the steady-state flight condition is level, it follows that:

(CTXS; = CD‘) = Q

In that case, the static spred stability criterion reduces to:

Cxs, = (CTxg, ~Cbu) < O (7.3)

The subject of static speed stability is treated in many different forms, Exam-
ples are Seckel (ref, 13, p. 120) and Etkin (ref. 4, p. 148),

<0 is a desirable characteristic in an
Sy
<0 is satisfied, the airplane tends to maintain its speed,

S
u

In addition, in approximating the phugoid behavior of an airplane, Etkin (ref,
4, p, 148) has shown that C

Intuitively, it seems that CX

airplane. When CX

X <0 is needed to ensure a stable phugoid.

Sy

An unstable sign of 8FX/ du is considered undesirable in approach flight,
The reason is illustrated in fig, 11, where induced drag is the primary cause

of the behavior of FX versus speed,
S
At a fixed throttle setting, the airplane has speed stability in steady-state

flight (trimmed) at point B . (Note that the slope of F,, versus speed is not

X
S

treated as a partial derivative here,) Anincrease in speed u leads to a force

which tends to slow the airplane down again, Also, an increase in thrust is

needed to increase speed, a decrease in thrust to decrease speed,



However, at point A , where mauny airvplanes fly in the approach, the
airplane is unstable with respect to speed changes, A decrease in speed leads
to a force that tends to slow the airplane down even more. If ,I.he airplane has
a limited thrust margin at point A (i.e. the difference between thrust
z;wailable and thrust requirved is small) or if the throttle response is slow, it
is possible to get into a situation from which recovery is possible only by
diving. This is of course not reasonable in an approach, and the result may
well be a crash, However, Boeing experience has shown that speed slability
is not required if good thrust response and pitch control are provided, In
particular, when an autothrottle system is provided, speced instability can be
artificially masked, As indicated on the figure, this discussion has heen
concerned with the special case of 1gflight. The balance of pitching mioments
is usually of great importance in cases where aFX/ du produces significant R
effects. This is especially true in the case of an autothrottle involving pitch
effects due to thrust modulation,

\ x,\f
\\ 7/ Increasing
Drag / thrust
force setting

Speed V

Propulsive Stall ~ ~
force S e Maximum thrust

{+)

FIGURE 1i. — EXAMPLE OF STABLE AND UNSTABLE SFEED BEHAVIOR
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On fig. 11, airplanes "'stall” at speeds to the left of the minirrum point, If

the unstable branch of the maximum i. ust curve intersects the F‘{ =0 line
£
S

at a speed greater than the stall, the airspeed will diverge and result in a stall
unless the pilot dives, The instability accompanying the divergence is usually
considered a performance factor and will not be further discussed here.

In cruise flight at high speeds, Mach number effects become important; it

is possible to have an adverse sign of C‘{ in the transonic speed range, If it

<
S
u

is necessary to fly in this speed range for long periods, an automatic Mach trim
compensator and/or an autothrottle system may be used to obtain de facto

stabilitv. The eifects of elasticity on CX are thought to be very small.
S

u

7.2.2 Side speed disturbance, -

Criterion 7,2
From table 7, the airplane is statically stable for a side speed

o Fy
v < O

disturbance v if:

The physical meaning of this criterion is that as a consequence of a side
speed disturbance v (along the Y-axis) a force is generated that tends to

oppose v . The approximation v =f Vcl will be used,
Sta>*ing from a symmetrical flight condition (zero sideslip) and using
stabilily axes,
Fys = Fay, = Cygq Sw (7.4)
This relation assumes that side force effects due to thrust are negligible,

Assuming that the side speed disturbance v does not affect dynamic pressure,

application of criterion 7.2 yields:

Cys <O (7.5)



Therefore, a reguirement for static stability is that the sideforce cocfficient
be negative, This condition is satisfied by current configurations for angles
of sideslip below that where flow separation is important, Th,.e military
ginvorthiness requirements of ref, 10 (par, 3.4,8) require inequality (7,5) to

be satisfied. The sideforce derivative C

Yg is generally thought to be unimpor-

tant in affecting static stability,

However, C,, does produce two practical static effects. Sideslip angle

g
is very difficult for the pilot to perceive, and CY < 0 increases its "visibil-

ity" by forcing symmetrical airplanes to bank in steady sideslips (ref. 10, par.
3.4.8 and ref, 44, par, 25.177b and c¢). It also allows the pilot to perform
skidding turns at very low altitude, where bank angle restrictions may have

to be observed because of terrain, ..

In its effect on dynamic stability C,, is frequently neglected, as stated by

Y
Etkin (ref. 4, p. 167). The derivative inB some cases affects damping of
lateral oscillations; its capability in dissipating lateral kinetic energy has been

illustrated by Roskam (vef. 23, pp. 65-75).

Effects of elasticity on sideslip enter mainly through the vertical tail and

the fuselage. Even though the derivative C., is of little importance to basic

¥p
airplane stability, effects of elasticity are usually accounted for because the
data required for so doing are also required for correcting Cnﬁ’ as will be

discussed in par, 7,3,

7.2.8 Vertical speed disturbance, -

Criterion 7. 3

From table 7, the airplane is statically stable for a vertical speed
disturbance w if: B Fz

oW

< O

The physical meaning of criterion 7,3 is that as a consequence of a
positive velocity disturbance w (along the Z-axis), a force is generated that

tends to oppose w , The approximation w=a V c will be used.
1
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In stability axes:

Fg, = Fazg + Frag = C2y g Sw
:(-—CL+CTzS)ﬂSw (7. 6)
Applying criterion 7.3 and using the fact that w~ « Vc , while neglecting
1
the effect of w on dynamic pressure, yields:
| aCL aCTz —
—_— e = RS Sw < O
Vc,( dx oo ) F W (7.7

The variation of CTz and o reflects the behavior of the normal force at
s

the inlet of a jot engine or at the propeller disk, as well as the basic change

~

of thrust with angle of attack, -

Etkin (ref, 4, p. 69) has shown that for the normal force:

2
m
Cc = [ + &
TE S normAL A g Sw ( J J) (7. 82)

so that, neglecting the change of basic thrust with «,

OCTas - _m'? (,+ d%é_)

d ox AR 35w do (7. 8b)

Since dej /da is normally small but positive, criterion 7.3 is certainly

satisfied if:
C., >0 (7.9)

Thus lift curve slope CLoz must be positive for static stability against a
disturbance w, This condition is always satisfied for angles of attack below
stall, Mach number does affect CLa strongly, but as long as the flow remains
attached, the condition set forth in equation (7.9) is always satisfied, Usually
C Ly increases with Mach number in the subsonic speed range and decreases
with Mach number in the supersonic speed range, In the transonic speed

range CL can behave erratically, depending on the configuration,
o



Lift curve slope has always been recognized as an important derivative,
It directly aflects the handling qualities of &n airplane in two ways: first, in
determining the load factor response due to angle of attack (this also has strong
implications on the ride qualities of an airplane) and second, i}1 damping the
short-peri d oscillations, The first effect is obvious, as indeed CL provides
the fundamental means of controlling the flizht path in conventional aci!rcraft.
The second effect may be seen by inspection from the approximation of short-
period damping ratio given by Etkin {ref. 4, p. 211), Replacing CL by

v, C

c the interpretaticn as a damping factor is physically clear,
1

L s
4
Aeroelastic effects on CL can be very large, even to the point of revers-
o
ing the sign, /hich is oi course undesirable. Because of this, the structure

must be such that CL sign reversal does not occur inside the flight envelope.

o
Aeroelastic effects generally tend to decrease C,.  for high aspect ratio and

Lo
highly swept configurations. On delta configuratiois, 2eroelastic effects tend
to be weaker and in fact can sometimes cause CL to increase rather than

o
decrease. )
7.3 Weathercock (B and «v) Stability Criteria

7.3.1 Static directional stability, -

Criterion 7,4
From table 7, the airplane is statically (directionally) stable for
a sideslip disturbance g if:

IMs
a4

> 0

The physical meaning of criterion 7,4 is that as a result of an angle of
sideslip disturbance B the airplane weathercocks into the new relative wind,

The term "static directional stability' is used because it agrees with
conventional usage of the word, Strictly speaking, this usage is not correct
because the word "directional' implies heading, but heading stability
(BMZ/ 0¥ <0 ) is not needed in an airpline; in fact, all airplanes have neutral
heading stability.
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In stability axes:

M'i‘.s = MAZS + MTES
(Ch + CTn) é_ Swb

1}

(7. 10)
Applying criterion 7.4:
Cn at CT,\“3 > 0
(7.11)
If the thrust dependence on sideslip is negligible, then:
Crp >0 (7.12)

It .s generally folt that static directional stability is desirable because it
gives the airplane the tendency to return to a straight flight path, When the ~
airplane is flying a straight flight path with initial sideslip, the steady-state

yawing moment coefficient is nonzero, Cn # 0. In that case, the requirement
1
for directional stability is:

2Cn| so

és h (7.13)
This means that the local slope of Cn versus B must be positive, This is what
is required in the military airworthiness requirements (ref, 10, par, 3.4,3-
3.4,5), which state the requirement for directional stability in terms of
characteristics involving rudder position and rudder force, For conventional
rudder control arrangements and effectiveness, this implies inequality (7.12).
The civil airworthiness requirements of ref, 44 take a similar position in par,
25.177 but, in addition, reauire criterion inequality (7.12) to be satisficd,

Inequality (7. 13) specifically covers situations involving nonlinear variation
of yawing moment with sideslip angle. Such nonlinear variations occur quite
often, A typical example is the XB-70A.

Mach number has a strong effect on C For SST-type configurations, a

n [ ]
high Mach number and a large angle of attack can combine to seriously deter-
iorate Cn . In such cases, the requirement Cn > 0 can be a serious design
problem, In recent years it has become a custom to specify a minimum value

for some unfavoralle combination of Mach number and angle of attack, It is



Ef“,@ & e,

not clear at present whether or not such a requirement should be replaced by
a requirement for certain minimum acceptable dynamic responsc character-
istics, One approach, suggested in ref, 13, p. 62, is to spec,.ify a minimum
rate of dissipation of latcral-directional kinetic energy, This idea is further
discussed in par, 7.4 of this report because it is more a matter of dynamic

than static stability.

Aeroclastic effects on Cn can he quite significant, In fact, several
current configurations can fly at values of dynamic pressure close to local

structural reversal of the vertical tail,

7.3.2 Static longitudinal stability, -

Criterion 7,5
From table 7, the airplane is statically (longitudinally) stable for

1y

an angle-of-attack disturbance o if:

2 My

P
o ©

The physical significance of this criterion is that as a result of an angle-

P

Derpor

of-attack disturbance « the airplane weathercocks into the new relative wind,

In stability axes:

M‘Js = MP“!S + MT’:‘S

=(Cm +Crm) g SWC .10
Applying criterion 7.5 yields:
Cmee * CTme < O (7.15)

The sign of C depends not only on the basic variation of thrust and normal

fI\
m
o
forces with angle of attack, but also on where the engines are located relative
to the center of mass,
For several current subsonic transport configurations the effect of power

on static longitudinal stability is significant, On current SST configurations the

o
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engines are located directly beneath a large lifting surface, Therefore, the
effect of o on thrust will be very small so that criterion 7,5 veduces to:

Crra < O ' (7. 16)

This is the familiar condition for static longitudinal stability,

It is generally felt that static longitudinal stability is desivable because
it implies that an airplane, once disturbed from a trim angle of attuck, tends
to return to its trim angle of attack, A common feeling about a stubility
criterion such as Cma < 0 is that something disastrous happens in a stepwise
manner as the "forbidden" boundary of Cmoz =0 is crossed, Such is not the
case, Instead, it has been found from both flight and simulator tests that the
precision of control and the "forgiveness" of the total system steadily decrease
as static longitudinal stability is decreased and goes positive, The degree of
pilot attention required increases, and the pilot generally must add lead with
positive Cmoz’ thercby increasing his workload until finally he is no longer
able to control the svstem, Boeing SST simulator studies have shown that
flight at positive values of Cma is possible, In this connection it is inferesting
to observe that the British airworthiness requirements of ref. 11, par, 2.1,

specify a maximum allowable negative (unstable) static margin of -0,05,

The tie-in between Cm and some other important static longitudinal
o
handling qualities parameters is discussed in par. 7.17.

Mach number has a strong effect on Cma; increasing Mach number gener-
ally results in an aft shift of the center of pressure (increases Cﬁa negatively)
in the subsonic speed range. In the supersonic speed range, the variation of
Cmoz with Mach number is such that it can either decrease or increase depend-
ing on configuration, In the transonic speed range, Cma can behave ervat-
ically, again depending on configuration. Aeroclastic effects on Cmoz can be
quite important and, in fact, can be useful as a design tool in counteracting
the effect of Mach number on Cma on some configurations, Another important
consequence of aeroelasticity which has been observed from wind tunnel tests
of elastic models is a "straightening out'' of Cm versus « curves: when rigid
models exhibit nonlinear Cm versus « behavior, corresponding elastic models

have almost linerr Cm versus « hehavior,



7.4 Static Stability Criteria for Rotational
Velocity Disturbances

7.4.1 Roll rate disturbance, -

@

Criterion 7.6
From tatie 7, the airplane is statically stable for a disturbance in

roll velocity p if:
DM
Sp

= O

The physical meaning of this criterion is that as a result of an increasc in
rolling velocity p a moment is generated which tends to oppose the increase

in rolling velocity.

In stability axes:

/‘/A’S = /MAxs +/"/7'xs

(7.17
Neglecting any roll effects on power and noting that: .
M, = > Swb
it follows that criterion 7.6 implies that:
Cer,<o0
< (7.19)

The derivative C 0 is recognized as the conventional roll damping deriva-

tive., For a rigid airplane without significant flow separation, the condition
indicated by equation (7.19) is always satisfied.

Roll damping is an important handling qualities parameter, particularly in
rolls and in Dutch roll, The airworthiness requirements of refs. 10 and 44 do

not specify sign or minimum values for C ) directly., Reference 10 does,
P
however, specify roll performance and Dutch roll response requirements,

Mach number can have a fairly strong effect on roll damping, but more so

for low sweep angles than for high sweep angles, Aeroelastic effects on C ’

Y
can be strong, particularly in high-aspect-ratio structures.



Roll damping is affected primarily by the planform and in pariicular the

wing, a.wiough the vertical tail can also make a significant contribution,

7.4.2 Pitch rate disturbance. - 3

Criterion 7.7
From table 7, the airplane is statically stable for a disturbance in

pitching velocity q if:
My

=

. O

The physical meaning of this criterion is that as a result of an increase in
pitching velocity ¢ a moment is generated which tends to oppose the increase

in pitching velocity,
In stability axes:
My = May +/1ry
= (Crm +C—rm)§ Sw

(7.20)
Application of criterion 7. 7 therefore yields:
> <o
The derivative CT pitch damping due to thrust effects (inlet or propeller
m

q
disk normal force or jet damping) is normally neglected. This is conservative,

since it is seen by equation (7, 8a) that C is usually negative, Neglecting

Tm

q

C , inequality (7,21) reduces to:

Tm

q
Cmg <0 (7.22)

The derivative Cm is, of course, the conventional pitch damping deriva-

tive, It is very important to handling qualities because together with CL it
o
determines the damping of the short-period mode.
Unless flow separation is a factor, condition (7.22) is always satisfied,
Pitchk. damping is affected by Mach number as well as by aeroelastic effects,

In both cases the effects are very much configuration-dependent,




7.4.3 Yaw rate disturbance, -

Criterion 7.8
From table 7, the airplane is statically stable for a distuybance in
yawing velocity r if:

2z

T L0
Sr

The physical meaning of this criterion is that, as a result of an increase
in yawing velocity r , a moment is generated which tends to oppose the

increase in yawing velocity.

In stability axes:

MZS '_‘/Wﬂzs "‘/’//7‘35
(7.23)

= (Cn *CTn)§ Swé
Neglecting the effect of thrust, applicaiion of criterion 7.8 therefore, yields:

Crip< o (7.24)

The derivative Cn is the conventional yaw damping derivative, It is
r
very important in handling qualities because it strongly affects Dutch roll

damping. The main contribution to Cn comes from the vertical tail, The
r
magnitude of Cn depends strongly on Mach number, angle of attack, and
r .
aeroclastic effects, In general, as long as no serious flow separation takes

place, condition (7,24) will be satisfied. For high Mach numbers coupled with

high angles of attack, it is possible that Cn deteriorates seriously,
r

7.5 Discussion of C and C
m [

u B
7.5.1 Pitching moment due to forward speed, Cm . — Under the definition
u
of static stability used in this report, the partial differential aMY/ ou (~C m )

u
does not qualify as a static stability parameter, However, as will be shown,

C m has important consequences to longitudinal stability from the viewpoint of
u

the pilot, In addition, in much of the literature this parameter is identified
with longitudinal stability,
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A positive sign of E)MY/ ou > 0 means physically that as a result of an
increase in forward speed, the airplane noses up, This tends to slow the
airvplane down because of the resulting drag increase plus the increase in
gravitational pull along the body X-axis, Therefore, an airplane will have

stable pitch moment versus speed behavior if:

aﬁlg;ﬁ > O (7.25)

In stability axes:

A{}’S =MA/S >* Mrys

- 7.26
Application of inequality (7. 25) to equation (7,26) yields:
2
/Clﬂ“_ *CTM;{_ } +(CMJ *C?’m:)-'l'}-&; > e
If the steady flight condition is such that Ql = 0, so that (Cm + CT )y =0,
_ 1oTmy
this reduces to:
(7.27
If the thrust pass.s through the center of mass or if CT is negligihle, the
n,
condition becomes:
CMK >0
(7.28)
Whether no: not CT is negligible depends strongly on the configuration,
m
u
For example, CT is not negligible on the 707 series of transports, whereas
m
u

on the 727 series it is,



The sign and magnitude of the derivative Cm depend strongly on plantorm
u
and on Mach number, Aevoelaslic effccts can also be significant but, in

general, no specific trend can be given, In current transport configura ons,
condition (7, 28) is frecquently violated because of the aft shift in center of
pressure with increasing subsonic Mach number, In that case, the airplane

is said to have tuck-under, This characteristic (C,, <0) causes the airplane
u
to tend toward a dive, If the accompanying consequence is a loss in longitudinal

control effectiveness (such as might be the case due to the resulting higher
Mach number or aeroelastic effects), the pilot may have difficulty recovering,
Whether or not an airplane has satisfactory handling qualities in pitch does not

necessarily depend on meeting inequality (7.27), because the behavior of CD
u

interacts strongly with C m* For example, an unstable Jm may be accept-
u u
able if its effect is checked by a large drag rise,

Most of the current family of transports have rather mild tuck-uader.
Certiiying agencies have significantly differing opinions about this chavacter-
istic, The FAA requires complete stick-force speed stability, and this
generally leads to incorporation of Mach trim compens-tors to hide ungiable

Cm characteristics from the pilot, The military authorities do not requir.
u
complete stick-force speed stability (ref, 10, par, 3.3,3), Az ~ nsequence,

commercial 707 airplanes are equipped with Mach trim compensators, while
the military versions (KC-135) do not have these devices, Experience has
shown that the KC-135 airplanes handle well in the transonic speed regime,

It may be concluded that mild violations of C, >0are acceptable, Just

u
what is meant by "mild" can only be settled through flight testing,

7.5.2 Dihedral effect (lateral stability) CIB . — Under the definition of

static stability used in this report, the partial differential E)MX/ AV (v 2 )
does not qualify as a static stability parameter, Nevertheless, this derivative
has an important effect on stability and handling qualities.

In stability axes:
Mrxs =Maxs +M7ag

7.29
2 (Cp +C70) Z Swé (729
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Neglecting the effect of thrust and considering BMK/ Ov<Owithv=pgV,

1
to be the ecendition for stability, it follows that

Crs = © (7.30)
must be satisfied for stability., The derivative Cﬂ is sometimes called
lateral stability, someii*aes dihedral effect,

It has been a loag-standing practice to design airplanes with negative
dihedral effect, i,¢.,

Cpo <o

The physical significance of this is that for a positive sideslip disturbance
{nose left), the airplane tends to roll away from the disturbance, i.e. to the
left, If the airplane rolls about ..s stability X-axis as a result of this, this
tends to diminish the effective sideslip angle. For this reason some investi-
gators identify Cy _ as a lateral stability parameter even though strictly
speaking the derivative should not be considered as such. The military flying
quality requirement (ref, 10, par. 3.4, 7) states that the left aileron force
skall be required for left sideslip, For conventional control arrangements
this implies that Cp 8 < 0 must be satisfied,

The derivative C P is strongly affected by Mach number, sweep angle,
lift coefficient, and configuration, The effect of aeroelasticity is little known,
and much research is needed in this area.

1t has been found that large negative values of Cp , can be very detrimental
« damping of the lateral response characteristics of an airplane, Large
sweep angles and large wing dihedrals contribute to negative values of C 2,
It will be shown that under certain simplifying assumptions, C ) g < 0is
needed to keep the spiral mode from being divergent,

7.6 Connections Between Static Stability
Parameters and Handling Qualities
The handling qualities aspects to be discussed in this section are those

associated with longitudinal control only -- in particular, with Cm and Cm .
o u



To the pilot such relationships appear through stick-force-versus-speed and
stick-force-per-g behavior, In the discussion that follows, it is assumed

that a change in stick force automatically leads to a change in, control surface
position of the same sign., This makes it possible to eliminate the feel system

characteristics from the ensuing discussion,

7.6.1 Control displacement versus speed (constant load factor), - At

constant load factor and zero pitch rate, the following expression can be
written for moment coefficient:
Qm"—: Qmo+meq+cmgg+QTm +Qm8 SE
£
The quantity Cm symbolizes the effect of fuel shifts on Cm due to a
6

change in attitude, while C is the thrust moment coefficient, Even thou@i

T
m
Liese quantities are of considerable importance for several subsonic trans-
ports, they will be neglected in the following discussion, However, the
restriction imposed on the discussion by this simplification should be kept

in mind, With the simplification, the moment coefficient can be written:

CM =€'770 +me“ *607;6_56

(7.31)
For a trimmed flight condition CIIl =(, so that:
557:9,,1 w _ Crmro #Crpy 0
) €
The parameter of interest, control displacement versus speed, is
obtained by differentiating equation (7, 32):
dSe dCmo / SXraim dCrra
a’VTJeIM = - dV [ n=2 * Core 4 r=2 # Kereun dV -/I7=I
n=1
C'”é'e
- (Cma "‘C'mx Kreno a’Crné:é_;
Cm 3 dV =/
Se ” (7. 33)

For a rigid airplane and negligible Mach effects,

C/CMo/ - dc'”x = ?_/{mée/ = &
Pz

Y JV [/ n=t SV ey
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so that the expression reduces {o:

0/55‘7,?,,,7? — Crrov, KX rosm /
rn=1

a1 et T *Cmgé gV (7. 34)

Since in a trimmed flight condition, also approximately,
L= = CA?SW
=€ #Ceall + O S/ 7S« (7. 35)

which yields:

o‘,';';e/,q = W'/C,L" * C‘é‘g éer£,»:)§5a»
Cin & Sw (7.36)

ﬂ - CLo "‘CLgeCSj

. =L S

it is found that:

0/ (2 d Tl / — - 41{/ - -2 CLY/EIA}
dV 2=z 2 S‘VCAQ chza Cg,_\.‘_ %I (7.37)

Substituted into equation (7, 34), this yields: .

0/ :5:5‘7-6,,” — Cmcg . ZCLr.er
V. ln=s Crrg  Com Voy (7.38)

Definition

A stable gradient of elevator displacement versus speed is one for which

0/55-7.% I > o
7 Y

Because control power Cm6 is usually arranged to be negaiive, it
E
follows that (d§ /dV) |n = 1 will have a "stable" gradient if C < 0,
By pim Mg
Figure 12 illustrates such a stable gradient, It is seen that these simplified

relations connect the static longitudinal stability parameter Cmoz directly to
the handling quality parameter (ddE/dV) | n=1, Atleastin smooth air, this
is one way for the pilot to judge the stability of an airplane., Note that for
Cmoz =0, which means that the ¢.g. and aerodynamic c¢ 'nter coincide, no
elevator change is required for a change in speed, For this reason (déE/dV) |
n =1 (as evidenced to the pilot through (dFS/dV) | n = constant) has been
strongly identified with longitudinal stability,



)

“Unstable”
(tuck-under)

“Stable” ——-/

(1)

"Stable"——/

FIGURE 1z. — EXAMPLES OF ELEVATOR DEFLECTION VERSUS SPEED GRADIENTS

For an elastic airplane or an airplane flying at transonic speed the

variations of Cm , Cm . Cm with speed can be very large and should no

(o] 3 6E

longer be neglected. In such cases the complete relation (7. 33) should be used. *

However, the relation between elevator 6E and speed V for an elastic
airplane is a very complicated one,

For an elastic airplane the derivative Cmoz evaluated at constant load
factor is not the same as Cma evaluated at constant speed. The difference
is caused by inertial effects (called inertia relief in the case of airplanes
with conventional tail arrangements). For calculating the elevator-versus-
speed relation at constant load factor, the inertia relief must be left out,

A similar comment applies to Cmd , although experience has shown that the
E
effect of inertia on Cm5 is very small, This is the case even on the B-2707
E
(SST).

*In fact, the effects of thrust and fuel displacement should also be accounted for,
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It can be shown that in equation (7, 33) the expression

ZC’_%/CM")/nr{ ” O(?olé’/c’”“/4= :/,_

approximately represcnts the speed derivative Cp, * A positive sign of Cm
u u
has a stabilizing effect on (déE/dV) | n=1, The converse is also true in that

a significant sigh reversal in Cm (tuck-under), can cause (dGE/dV) In=1
u

to change sign., This is illustrated in fig, 12 by the dotted line., Equation
(7.33) also shows that a positive sign of (de /dV) | n =1 is detrimental to

E
a stable gradient (déE/dV) | n=1, but this effect is masked by a decrease in
C itself. A typical relationship betwecn control power C and speed
maE nlaE >
V is illusirated in fig, 13. Largely owing to aeroclastic effects, Cmd
E
tends toward zero, resulting in steepening of the gradient (dGE/dV) j n=1,

Control
reversal

Reversal speed is v
required to be
1.2 times the

operational placard

{+)

FIGURE 13. — EXAMPLE OF AEROELASTIC DEGRADATION OF CONTROL EFFECTIVENESS



The discussi. stability and control at constant load
factor., A paramet e considered in conjunction with

(d6,/av) [n=1 is W), ) comwwol required per g,

The pilot may not object to a mild sign change in (d(SE/dV) | n=1, pro-
vided the airplane retains the correct (stable) gradient of control displacement
per g. Some aspects of the latter parameter are discussed in the next

paragraph,

7.6.2 Control displacement versus load factor (constant speed), - Using

the same simplified relationship between moment coefficient and control angle

as in par. 7. 6.1, but accounting for pitch damping Cmq» it is found that:

'
5 — C’mo ‘f(,m‘xoé”' C‘p@ 2'@ ;;c;
Eremg — T

(7.39)
Crrg,

In a steady symmetrical pullup the following relationship is found between
pitching velocity Ql and load factor n :

(#-1)
Q= (24,3

Ve, (7.40)

From equations (7.39) and (7.40), the control displacement versus load factor
gradient at constant speed is found by differentiation:

o > C eriasnt # O sy 2 Coonn & ¢
SSererms = o I, T o 1w o I T 205
o
c"’é‘s

o

Crro * Crrooe Xreim *C,rng C:—-_:%S a/Cr/;é-s/
72

(7.41)

For a rigid airplane the coefficients do not change with load factor, and this
results in:

0’“7‘&/#(/ gE
a/éé'remv =~ [Crma o [, ” 6’”3 A

on ey
Cors

Se (7.42)
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Assuming that the following relation holds approximately:

nNW = C,Lg Sw (7.43)
it is seen that: 4
é..g.s:. = _._W - C

Substitution into equation (7.42) yields:

-

Clram gc<
et £11) T+ Cme =L
dSeTRlM\ - Crmy Crg Ve, e 2Ve ®
dn Ve, Cmge
(7.45)
Definition

A stable gradient of elevator displacement versus load factor is one that
satisfies:

d8errim

dn ‘VC. <0

(7.46)

From equation (7,45) it follows that the above definition is satisfied
when

~—

Q N,
Co < " Smadler Sealy, = - EmeCi €5,
e, M

TR

(7.47)
The center of mass for which the elevator per g is zero is called the
maneuver point, It coincides with the aerodynamic center for negligible pitch
damping, From relation (7,47 it can be seen that at altitude the term on the
right becomes less important, indicating that maneuver point and neutral point
approach each other, Thus, once more & direct relation is established be-

tween a handling quality parameter and static longitudinal stability C moe
o




Note that:

For a rigid airplane without pitch damping, a stable gradient
(déE/dn) | Vcl implies a positive static margin, With pitch damping,

it implies a positive maneuver margin,

For a rigid airplane with negligible pitch damping term or flying at
high altitude, Cma < 0 is both necessary and sufficient as a require-
ment for the control gradients (d6,/dn) | Vcl and (d85,/dV) | n=1

to be stable,
For a rigid airplane in the transonic range, Cm < 0 assures the

o |
gradient (d6,/dn) | V., to be stable, but for the gradient (A5, /dV) |
1
n = 1 to be stable, the additional requirement Cm > 0 is needed.

For an elastic airplane, the situation is more complicated, The

- gradient elevator per g can depend strongly on the elasticity of the

structure, which determines the values of (de /dn) | Vc and
o 1

(de /dn)y | Vc . It is evident from equation (7.41) that when
o 1 .
aeroelastic effects cause Cm6 to approach zero, the elevator per

E
g gradient steepens considerably.

7.7 Summary of Static Stability Criteria

In this section the static stability criteria of an airplane have been shown

to evolve logically from the definition of static stability and static stability

criteria given at the beginning of par, 7.1,

The question of whether or not certain forms of static stability are de-

sirable was referred to handling qualities, but some aspects of this question

were briefly discussed, The physical significance of stability derivatives

appearing in the static stability criteria has been discussed. A summary of

static stability criteria is presented in table 8, The viewpoi~is expressed as

requirements (criteria) by military and civil flying quality specifications
(refs, 10, 11, and 44) are included in this table,
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TABLE 8.—SUMMARY OF STATIC STABILITY CRITERIA

GENL. FORM [APPROXIMATE | IMPORTANCE TO MIL-¥-8785, RETF, 10
OF STATIC OR ALTER~- HANDLING %
STAB. NATE FORM QUALITIES
CRITERION
Cz5y<0  on Needed for stable Par, 3.3.6 limits phu-
S5 . o Corr o phugoid, Not im- | goid divergence., No
Ju (No thrust portant if throttle direct requirement,
effect) response is good,
Helps pilot perceive | Pars, 3.4.3 and 3.4.8
o5 Crs <o sideslip. Allows interpreted to mean
S0 <o sklddm_g turns .at‘ Cya< o
(No thrust low altitude (wings
effect) level).
Primary means for | Par, 3,3, 3% specifies
o flight path control, | short period require-
5._5-.'.4.0 Con S0 Significant to short | ments, No direct
o d period, Always requirement,
satisfied before stall,

Needed to maintain | Pars. 3.4.3, 3.4.4,

M. straight flight path, | 3.4,5 interpreted to
5;’3'> O Oy >0 mean Ch,, >0 -

Affects time his- Par, 3.3.1 inter-

tory of pitch re- preted to mean

sponse, C =) C <0
Sy L o |Cnpeo Mg mae
FFX can be tolerated on

large A/P. Affects

stick force behavior,

Affects time history | Par, 3.4.1* specifies
ey of roll response, Dutch roll require-
é-—‘f < QO |Ch=<©e Affects Dutch roll | ment, Par, 3.4.16

A damping, specifies roll per-
formance,

Affects damping of | Par, 3.3, 5% specifies
SN, short period (in- short period require-
3“"2‘ <o |Crmy<o creases pitch ments, No direct

7 stiffness), requirement.
Affects Dutch roll Par, 3.4.1* specifies
Cn, <O damping {increases | Dutch roll require-
g———;_%'-( o r | yaw stiffness). ments, No direct
requirement,

*MIL~F~8785 recognizes augmentation-on and -off cases,

only with unaugmented cases,

This document deals



TABLE 8.~ SUMMARY OF STATIC STABILITY CRITERIA (CONTINUED)

GENL. FORM |APPROXIMATE | IMPORTANCE TO MIL-I"-8785, REF. 10
OF STATIC OR ALTER- HANDLING g
STAB. NATE FORM QUALITIES
CRITERION
Improves speed con~{ No direct requirement,
trol, Warns of in- |bui par, 3,3.3 implies
Sy >0 |y 70 advertent over that violation is al-
=y “ (under) speed, Af- |lowed transonically,
fects stick force
behavior,
Warns of sideslip, Par, 3.4.2, 3.4.6,
Allows emergency and 3,4, 7 inter~reted
-,9:—{1—/5 L O Cp<o roll control, Af- to mean
rd 4 C

fects Dutch roll,

2 <o,

167



16y

nr

TABLE 8.--SUMMARY OF STATIC STABILITY CRITERIA {CONCLUDID)

GENL, FORM |[APPROXIMATE | FAR-~PART 25, BRITISI CAR,
OF STATIC OR ALTER~ RET, 44 SECT{ON D, REF, 11
STAD, NATE FORM
CRITERION .
. Crs <. © o2 | No direct No direct
§§< o Coy>o requirement, requirement,
“« (No thrust
effect)
C')b.: o Par, 25,177 (¢) Par, 7,3 interprcted
@Fv e 0 (No thrust interpreted to mean | to mean &, < o.
2V effect) C'yﬁ <.
=) No direct No direct
S, <O Coq>0 requirement, requirement,
Yar, 25,177 (a) Par. 7.2 interpreted
oz s Cng>o0 interpreted to mean | to mean Crg>o.
No direct require~ | Par, 2,1 requires
ment, but pars,
5W,< o |Grace 25,173 &25.175 I - .05,
Sx interpreted to mean | @C«
Cﬂd < O,
SNMx No direct No direct
55 <0 |Gg-<o requirement, requirement,
No direct require- | No direct require-
M, ment, but par, ment, but par, 8,1
haldl o <o Crmg<o 25,181 requires all | requires all short
93 short periods to be | periods tv be heavily
heavily damped, damped.
No direct require~ | No direct require-~
2 ment, but par, ment, but par, 8,1
Gl 2 o Cn, <0 25, 181 requires all | requires all short
r short periods to be | periods to be heavily
heavily damped, damped,
oM P 25,175 (c) Par, 31,2 implies
hadl e Corny > implies that viola- | that violation is not
du tion is not allowed, | allowed,
Cr < Par, 25,177 (b) Par, 7.1 interpreted
S”__/;_’/g “< O ] 0" interpreted to mean | to mean Q,‘,< o

C,(d‘a.




8, DYNAMIC STABILITY CRITERIA

8.1 Introduction

This section presents dynamic stability criteria for rigid and elastic air-
planes, The majority of current airplane dynamic stability analyses are for
controlled airplanes and employ the root locus method of aualysis, based on
linear theory (i.e., linear approximation of the equations of motion), TlLis
report, however, deals only with the uncontrolled (controls fixed) airplane,
The subject of dynamic stability is here treated from a general viewpoint,
This means that methods of dynamic stability analysis other than those based
on linear theory will be examined, The definitions of dynamic stability and
dynamic stability criteria to be used are stated below.

Definition

Dynamic stability is the tendency of the amplitudes of the perturbed motion
of an airplane to decrease to zero or to values corresponding to a rew steady

state at some time after the disturbance has stopped,

For example, when the airplane is disturbed in pitcl from steady-state
flight and the resulting perturbed motion is damped out after some time,
although the ne'r steady state is not significantly different from the original
one, the airplane is called dynamically stable. The example and the definition
indicate that the subject of dynamic stability deals with the behavior of the

perturbed motion of an airplane about some steady-state flight path,

Definition

A dynamic stability criterion is a rule by which perturbed motions are
separated into the categories of stable, neutrally stable, or unstable,

In other context dynamic stability criteria have been interpreted as
requirements for specific response characteristics or for meeting specific
frequency damping relations, This type of interpretation is embodied in the
military specification for flying qualities (ref, 10) and its proposed revision
as documented in ref, 12, The flying qualities specifications of ref, 10 and

169



170

12 arc here viewed as handling qualities criteria; as such, they are beyond
the scope of this report. However, there are important conncctions between
dynamic stability criteria (viewed as mathematical statements,of slability) and
the handiing quality criteria of refs, 10 and 12, Therefore, wl.lere needed for
physical interpretation of the stability cri. ‘via established in this .eport, the

connections with handling qualities are pointed out and discussed,

The static stability criteria evolve from application of the definition of
static stability to the instantaneous forces and moments. For dynamic sta-
bility criteria, such a development is not possible. Dynamic stability is asso-
ciated with the response behavior of an airplane as a result of disturbances,
Because this response behavior is expressed by differential equations of
motion, the study of dynamic stability behavior of airplanes relies heavily on
the theory of stability of differential equations. The differential equations of
motion of an airplane can be cast in many different forms, and the form
selected in a particular case depends on the similarity of the mathematical
model to the real physical problem, Differential equations of motion of an
airplane can be linear, nonlinear, autonomous, or nonau:onomous. In each
case, the corresponding theory of stahility is, or can be, different as will

become clear from the developments to follow,

Experience has shown that in many cases the dynamic behavior of air-
planes can be satisfactorily represented by assuming that perturbations away
from steady-state flight are small, In that case, the equaticns of motion can
be approximated by a set of linear second-order differential equations with
constant coefilcients, These equations are called small perturbation equa-
tions. The stability theories most commonly associated with these equations

avrc called characteristic equation methods.

In general, it can be said that linear approximation methods have given
satisfactory results in representing airplane dynamic behavior, In other
words, it has been found that when airplanes satisfy stability and/or handling
qualities criteria based on such approximations, their real-life dynamic
characteristics are roughly as predicted. There are important exceptions,
however. TFor example, the mildly divergent Dutch roll behavior of the



Boeing 727 at altitudes above 26,000 feet was not predicted by the linear theory,
Also, as shown in rcf, 23, it is possible for certain slender aircraft con-
figurations to exhibit significant nonlinear behavior even when the aerodynamic
forces are assumed to be linear, Finally, there are cases where nonlinear
aerodynamic bchavior is important. An example is the nonlinear variation of

directional stability with sideslip, as found on the XB-70A,

It is apparent that there is an increasing number of cases where linear-
ization of the equations of motion is no longer permissible. For that reason,
it was felt necessary to include in this report several more generally valid

stability criteria,

Perhaps the most general way of determining stability behavior of air-
planes with significant nonlinear effects is a brute-force integration of the
complete (nonlincar) equations of motion. Such integration results in time

histories of motion,

A general description of time history generation (integration) and the

corresponding stability criteria are presented in par. 8.3.

Some dynamic stability criteria which are based on an energy decay method
are presented in par. 8.4. In this case no particular form is required for the
equations of motion, although the perturbed form (linear or nonlinear) seems

to be preferred,

Paragraph 85 presents a dynamic stability criterion, based on Lyapunov's
stability theory, which applies to nonlinear as well as linear differential equa~

tions of motion,
Finally, par. 8.6 provides a summary of dynamic stability criteria,
8.2 Dynamic Stability Criteria Based
on Characteristic Equation Methods

When airplane dynamic behavior can be approximated by assuming that
motion perturbations (excursions) relative to a steady state are small, it is
possible to reduce the equations of motion to a set of linear, second~order
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differential equations with constant coefficients, These equations can be
reduced to the following general form:

{X} = [2]{x} ot (8.1)
where T A] is a matrix of constant coefficients and { x} represents a column

matrix, the elements of which are the motion variables. For example, in

the case of rigid-airplane longitudinal small perturbations:

) = 1wx, 8

The purpose of this section is to establish dynamic stability criteria for
airplanes in cases where the equations of motion can be brought into the form

of equation (8.1).

The basic form of equation (8.1) applies to the rigid*, the equivalent
elastic*, and the completely elastic* airplanes. For that reason, stability
criteria deduced from equations of motion to the form of equation (8.1) apply
to the rigid as well as to the equivalent elastic and the completely elastic

airplanes,

The expanded forms of equation (8. 1) for the rigid and equivalent elastic
airplanes are given in tables 4, 5, and 6. For the completely elastic airplane
equations 6,166 and 6,168 are representative of the form of equetion (8. 1).

Stability of equations of the type (8.1) can be determined with the aid
of their characteristic equation, The following development shows how this

characteristic equation can be obtained.

*As shown in Sec. 9, the rigid airplane has six degrees of freedom. The
same is true for the equivalent elastic airplane, but now the aerodynamic
derivatives are corrected for static effects of elasticity, In the completely
elastic airplane, dynamic response of the structure is accounted for by
separate equations of motion, Thus there arc 6 + n degrees of freedom,

where n is the number of structural degrees of freedom accounted for,



Taking the Laplace transform* of equation (8. 1), it follows that:

3{xs(5)} ~ {Xe(tY)} = ["]{xs(s)} (8.2)

where
= ¢ * jw = complex frequency variable

and the subscripts s and t are used to distinguish between the functional
relationships {x_} and {xt 3

Solving equation (8.2) for - ‘§},

{xelsl} =[ts] - 4] ()

Equation (8.3a) forms the frequency-domain (Laplace domain) solution to

(8. 33)

equation (8,1). It can be shown (refs. 4 and 45) that time-domain solutions
to equation (8.1) are obtained by applying the inverse Laplace transform to

equation (8, Za) with the following results:

k .
Xi(t) = & D 7" cos{wjt +aj)
J=i (8. 3h)

where X.() are the components of {Xt(t)}

Dij = constants determined by the initial conditions
Qj = constant phase angles to be determined from initial

conditions

The quantities oj and wj are respectively the real and the imaginary parts of
the roots Sj of the characteristic equation

[ENRI R

Since wj the motion frequency, is always positive or zero and since all Dij

(8.4)

and © j are constants, it follows that the motions X; (t) are governed by the
real parts crj of the roots Sj in the following manner:

*For discussion of the Laplace transform, see ref. 45,
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a) If each o < 0, the amplitudes Dije ot will decay exponentially with time
(fig. 14a).

b) If at least one orj =(, say g g0 while all ofher o'j < 0, at ],.east one residual
perturbation of constant amplitude will be observed (fig, 14b),

c) If at least one o'j > 0, the corresponding amplilude will grow exponentially
with time (fig, 14c).

Thus, the behavior of the motion is seen to be governed largely by the roots

of the characteristic equation (8.4). Expanding equation (8.4) yields a poly-

n [)
> sta;=o0
i=o

where the Ai are constant coefficients and n is the order of the matrix [A].”

nomial in S of the form:

(8.5)

Sometimes equation (8, 5) is also called the characteristic equation,

There are three basic techniques that can be used to determine airplane
stability from equation (8.5). Application of these techniques leads directly
to a corresponding dynamic stability criterion, as will become clear from the

development that follows,

The most widely used technique is to solve for the roots Si of equation
(8.5) and discuss their significance to the motion, A dynamic stability

criterion based on this technique is presented in par. 8.2.1.

The second technigue deals directly with the coefficients Ai of equation
(8.5). It leads to a dynamic stability criterion known as Routh's criterion,
and is presented in par. 8,2.2. Routh's criterion is not widely used in
practice, but it provides a logical connection between static and dynamic

stability, This connection is important and is discussed in detail.

The third technique consists of a collection of methods that are largely
based on linear control theory. Because a detailed discussion of these methods
is beyond the scope of this report, only a brief summary is presented in par,

8.2.3, with several references where detailed discussions may be found,



In these examples
it is assumed that
the djsturbance is
introduced at time t = t,
and also removed

(2) x; )
Dij 0j<0, ;=0 att=tg, ie a “pulse.”
Gj <0,@j =0
(b) Xi(t) /——Gizwi =
D,
to Time, t

le) x;lt)

o Time, t

FIGLRE . 4. — EXAMPLES OF SMALL PERTURBATION MOTION BEHAVIOR
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8.2.1 Dynamic stability criteria based on the roots of the characteristic

equation, -- The roots qf equation (8,5), Si = O‘i * jwi i=1,2,...,0n
can be obtained by classical techniques, For n <4, this can he done by
hand -- for example, by the methods of ref, 46, pp, 22-24, or ref, 186,

pp. 271-273, For higher order equations the roots are generally calculated
with digital computers, using methods such as presented in ref, 47, The
roots of equation (8.5) are identical with the eigenvalues* of [A] for linear
equations with constant coefficients, They determine airplane stability by
virtue of the signs of Oy the real part of Si as discussed ~bove, The follow-

ing dynamic stability criteria can now be formulated.

Criteria 8.1
If the airplane equations of motion are linear ant autonomous, then
the airplane stability behavior is said to be:

a) Stable, if the real parts of the roots of the characteristic equation
are all negative,

b) Neutrally stable, if there are one or more roots of the characteristic
equation with zero real parts and the rémaining roots have all negative
real parts, and

c¢) Unstable, if there is at least one root of the characteristic equation

with a positive real part,

A simple proof of criterion 8. 1a is given in app, C. The dynamic
stability criteria 8,1 are both necessary and sufficient. These criteria have
formed the basis for most dynamic stability work during the past decades.

In most of the standard literature (refs. 4, 13, 14, 15, and 16) dynamic
stability of airplanes is treated from this viewpoint, which finds its justifica-
tion in the assumption that airplane dynamic behavior can be described by a
set of linear second-order differential equations with constant coefficients,
The handling qualities criteria (specifications) of refs, 10, 11, and 44 also

rely heavily on this assumption and consequently on criteria 8.1.

*For a discussion of eigenvalues, see ref, 12,




The application and interpretation of criteria 8,1 to the rigid, equivalent

elastic, and completely elastic airplanes is discussed in more detail below,

It is shown in Sec, 6 that the possibility exists for [A] inequation (8.1)
to have elements that are known functions of time, This occurs in steady
climbs and dives when dynamic pressure is allowed to vary, A typical
example is discussed in app. A, where it is shown that the SST in certain
areas of the flight envelope violates the constant air density assumption
made in deriving the equations of motion, In such a case, equation (8,1) is

still linear but is called nonautonomous, and the equations assume the form:

: 3 = (A1) .

For this type of equation, no simple stability theory is known. The stabilityb
theory of Lyapunov, discussed in par. 8.5 and Sec, 9, could be used. The
writers of this report feel that the following simple approach to stability
determination of equation (8. 6) is valid; however, they have not found a proof,
The approach consists of applying the characteristic equation method to

equation (8. 6) with the following modifications. The characteristic equation

|t - aE]| <o

considered is:

(8.7
The time-variable coefficients in [ A(t) ] are bounded by the physical

aspects of the problem as discussed in Sec. 6. The following dynamic stability
criterion is postulated,

Criterion 8, 1d *
When the real parts of the roots of the characteristic equation ]
(8.7, are negative for t =0 as well as for t = t;» where £ is the

practical limit* of the time interval considered, the airplane is
stable in that time interval,

*The practical limit is, for example, determined by the time to reach the
ceiling of the airplane or the time to reach the ground.
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As stated, this criterion needs proof, To make it feasible, the following

considerations are offered, Define the quantity E as equal to the total

dE

dt *

In that case, E takes the place of the Lyapunov function in theorem 1, Sec, 9.

kinetic energy of the airplane in the perturbed state and also define E=

If criterion 8, 1d is satisfied, it can be interpreted to mean, according to
Lyapunov's theorem 1 (Sec. 9), that L is negative at the beginning and end
of the time interval. This indicates that energy is being dissipated att = 0
and at t = tl. The writers of tl.lis report feel that the proof of criterion 8, 1d
hinges on the sign behaviorof E for 0 < t < tl'

Whether or not criteria 8.1 are satisfied in a practical case can be
determined by solving directly for the roots of the characteristic equation,
A technique for determining stability behavior from the characteristic
equation without sclving for the roots, known as Routh's criterion, is dis-

cussed in par, 8,2,2,

8.2.2 Routh's criterion (dynamic stability). -- Routh's criterion can be

used to determine whether or not criteria 8,1 are met without solving lor
the roots of the characteristic equation, This should not be confused with
what is sometimes called the Routh-Hurwitz criterion, Routh and Hurwitz
developed similar but not identical criteria, However, from the standpoint

of calculations, Routh's is the more direct approach, *

The result of expanding equation (8.4) is a polynomial' in 8 of the

following form: n

it=0 (8.8)

where n is the order of the matrix [A]. Routh's criterion is stated as a
series of conditions involving the coefficients Ai' Before stating the necessary
and sufficient form of this criterion, it is necessary to develop the relations
between the coefficients Ai that are used in the formulation of this criterion,

These relations are called test functions,

*For a discussion of the Hurwitz criterion, see ref, 48.



The test functions are constructed by first writing down the coefficients
of the polynomial as follows:

An An=z  An-a -

«*

Aot An-3 Ap-s R

A necessary but not sufficient condition for stability is that all of these
coefficients have the same sign. Next, additional rows and columns are
determined by the following scheme:

where
An-1 An-2 —ApAn-z 8.9)
Psi = An-1
p.. = An-1An-4 -~ AnAn-5
2 © An- 1
P3y An-y = Pas An-
P4| - P3|
P2, Ap-5 - -
Ppp = —2! n‘:a‘ Pag An-J , etc.
Py, = Pa, p;i‘ 31 Paz , ote.
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If the test functio. An_l, and Pi 1 for (i=3,4,...,n+1)all have

?
the same sign, no w.i..able root occurs, This is both necessary and sufficient,
The rows will be found to become shorter by one element every two rows and

to be (n + 1) in number,

It has been shown by Duncan (ref, 49) that the vanishing of A o and Pn—l, 1
represent significant critical cases, When a design parameter for a stable
airplane is altered so as to cause instability, the following conditions hold:

a) If only A0 changes sign, one real root Sj of equation (8. 8) changes its sign
from negative to positive, This implies that a pure divergence (instability)
occurs in the solution, This is called flight path divergence,

b) 1If only Pn-—l, 1 changes sign, the real part of one complex pai.r of roots
changes from negative to positive. This implies that a divergent (unstable)
oscillation occurs in the solution, This is called dynamic or oscillatorf

flight path divergence,

The type of divergence in a) is not to be confused with the type of static
instability discussed in Sec. 7. The instability in Duncan's sense implies
divergence of the perturbed fligh* path away fror. the steady-state flight path,
Static instability in the sense of Sec, 7 merely means the tendency of not
instantineously opposing a disturbance of the steady-state flight path, Figure
15 graphically illustrates four extreme examples, There are some strong
connections between the two types of instability; these are discussed in Sec, 6.

The interesting result according to Duncan is that A 0o~ 0 represents a
boundary between divergence and convergence of the flight path, v.hile

Pn—l 1= 0 represents a boundary between oscillatory stability and instability, *
?

*It is noted in ref, 48 that a change in sign of any Pi implies that a complex
’ .

1
pair of roots crosses the imaginary axis if:

a) When Pi 1- 0, the two preceding rows Pi-2 j and P § have the same
- ’

i-1,
number of nonzero elements j and are such that the ratio of corresponding
elements in the two rows is a constant, i.e. P, j/ Pi1,i
] 4
for each j ., Also, in ref, 48, if a) is not satisfizd, then:

b) There is at least one root in the right half plane, and the airplane is

= g constant

dynamically "unstable' and not neutrally stable,

This constitutes a contradiction of Duncan's work, The writers of this report
have not resolved the discrepancy,



Dynamically unstable: i.e. divergence
. 0j> 0(A;<0)
Statically
unstable .
Ch> 0
Perturbed
angle of I
attack, I
(a3
(!0 ——
Dynamically stable:
o i.e. convergence
iz s SV
_ 6j <O {Ag> 0)
Crmg< ©
Statically
stable
t, Time, t

FIGURE 'S, - EXTREME EXAMPLES OF THE DIFFSRENCE BETWEEN STATIC STABILITY
AND FLIGHT PATH STABILITY

From the preceding discussion, the following necessary and sufficient

dynamic stability criterion is deduced.

Criterion 8. 2a

If ali Ai in the characteristic equation are positive and if the test

functions P, , fori=3, 4, ., ., ., n+ 1 are all positive, the airplane

i, 1
is dynamically stable,

Two different conditions indicate dynamic neutral stability:

Criteria 8.2b
a) If Ao = 0 and the reduced equation

n
- Sy AL
=t =0
& 75

satisfies criteria 8.2a or,

b) If all A1
(8.9 ) is satisfied,

then the airplane is dynamically neutrall, stable,

are positive, ond condition a of the footnote following equation
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Thei. ave three different conditions that indicate dynamic instability:

Criteria 8.2c

a) If thereis a s, 1ge in Ai, i=1,2,...,n)or -

b) If all A, are posilive but one P, ;=0 04

,1

¢) Ifall Ai are positive and onc P, 1 is negative,

the airplane is dynamically unstable.

The relationships A 0o 0 and Pn—l 1” 0 have olveady been identified as
3
stability houndaries. It is possibie to construct relations betwecn £n an
more stability derivatives (or inertial parameters) for which A= 0 and/or

Pa1,1
because they identify combinatione of values of derivatives (or inertial

= 0 are satisfied, Such relations are also called stability boundaries

parameters) for which instabilities occur,

it is unfortunate that the expressions for Pi 1

they can be used in practice only in conjunction with a computer. Expressions

are usually so complicated;

for Ao are more easily handled; because they deal with the important relation-

ship between static and dynamic stability, they are discussed in Sec. 6.

Routh's critesion can be apphied to equation (8. 7) as well as to equation
(8.4). This would lead to an :- -ay like equations (8.9), where the test
functions would now be polynomials in t. It would then be possible to solve

for the values of t that would allow any P, . = 0. If these values were such

i1

thatt < 0 or t > t,, the eigenvalues A () would have negative real parts for all
1 i

t of interest. It may be possible to develop the needed proof for criterion

8. 1d along these lines,

In addition to the techniques described so far, there are other approaches
to the problem of determining stabiiity behavior of the small perturbation
equations of motion of the form of equation (8.1). These are brieﬂy discussed
in the next paragrapi,

8.2.3 Other technigues associated with characteristic equations. -- Many

techniques used in systems analyses and synthesis techniques (control theory)
may be applied to the perturbed airplane equations of motion of the form of

equn ion (8,1). Scme of the more widely used -~ for example, Bode diagrams,
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Nichol's charts, Nyquist criterion, root locus plots, phase trajectories, etc, --
can be found in literature such as refs, 13, 19, 20, 21, and 22, Most of these
techniques were gencrated for special types of problems, and ,Eheir use is
restricted because of limitations imposed by assumptions and/or effort re~
quired in their application. However, they are generally quite useful in
approaching the problems of handling qualities, ride qualities, and control

system (closed loop) analyses,

An adequate description of any of these techniques would require much
more space than can be given here, However, some of the useful applications
of these techniques should be noted, An example is the process of varying
design parameters to stabilize an airplane which is unstable for certain flight
conditions. For another example, the effect of "'closing the loop" when adding
.n augmentation system can be assessed by using the Bode diagram, Nichol's

chart, Nyquist criterion, or root locus.

Many of the special techniques involved in nonlinear analyses are just
more sophisticated linearizing techniques that allow the engineer to apply

linear techniques to approximate transfer functions,

Linearized or quasi-linearized airplane and system models are usually
described by transfer functions, i.e. outputs + inputs, where output = variable
behavior and input = disturbance behavior., It is assumed that the transfer
function approach to the relationship of rigid and elastic degrees of freedom
for the small perturhation equations could become a valuable tool, In this
sense, the transfer functions could bé:

Xj (3)
where X, (S) = rigid degree of freedom
X j (S) = elastic degree of freedom
G (5 = transfer function

The amplitude and phase relationships obtained by applying some of the
above techniques to G(s) would lead to a more enlightened viewpoint of the
influence of the elastic degrees of freedom on the rigid-body degrees of
freedom and vice versa. This approach is used in conjunction with root loci

in ref, 50 for considering the problem of flutter.
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Many applications of the various syslems analysis techniques mentioned
above have not been discussed here, However, most of them would probably
lead into the areas of handling qualities, ride qualities, or coytrol system
analysis or synthesis, Thevrefor., the pursuit of knowledge in.this area is
l.eft to the reader while subjects more per! nent to pure stability behavior
analyses arve pursued. The next section deals with stability criteria based
on the time history approach, which is of particular interest for flight

situations where the small perturbation assumption is not valid,

8.3 Dynamic Stability . riteria
Based on Time Histories

It was stated in par. 8.1 that today there are several practicsl cases
wi.ere nonlinearities in the equations of motion (dynamic or aerodynamic) are
too large to be neglected. When the equations of motion of ar airplane are
nonlinear, it is not possible to apply the characteristic equation methods
described in par., 8.2, It has been common practice in such cases to base
judgment of siability behavior on time history solutions of the equation of
motion. A time history is a set of data that describes airplane motions as
a function of real time, i.e. {X} = {X(t)}.

Time histories have the advantage of prov.ling a clear physical picture
of the motion of the airplane, In addition, they allow a direct comparison of

analytical with experimental data,

Time histories can be generated by integrating, with respect to time, the
complete airplane equations of motion or, for that matter, any of the equations
of motion shown in Sec, 6. -The integration technique may vary, but the
approach is generally the same for any type of computer, The airplane
(equations} must be trimmed (equilibrated) either exterior to or in conjunction
with the problem to be solved, i.e. the solutions {Xl} of the algebraic steady-
state equations must be obtained and used as initial condi*ions. The program
is executcd (started) with t = 0, At some time to 20, a disturbance {AX }is

introduced and the response {X(t)} calculated for t,<t<t where t, - to is

1 1
usually a time interval long enough to estanlish stability behavior but not so
long as to involve mass or other changes that would significantly affect assump-

tions made in deriving the airplene equations of motion,



Ir this fashion, slability behavior can be determined by observation, i, e.

by "jedging' the behavior of the variables of the resulting time history,

The judgment of stability behavior through the use of time histories will
be referred to as stability criteria 8,3, These criteria ave formulated as

follows:

Criteria 8.3
If the motions of an airplane following a disturbance from steady-state
flight are determined by a time history (integration), then the stability
behavior is said to be:

a) Stable if the motions remain in proximity to the steady-state

b) Neutrally stable if the motions are undamped and oscillatory about

¢) Unstable if the motions diverge from the steady state either linearly,

exponentially, oscillatorily, or in any combination thereof.

some steady state ~

If the disturbance is temporary, the reference steady state is the initial
steady state. If it is permanent, e,g, a step elevator change, the reference
steady state is a different one determined by the new equilibrium flight

conditions,

The following observation is important. For nonlinear equations of
motion such as those of tables 4, 5, and 6, several different cases involving
different disturbances, both in kind and magnitude, must be run to obtain
enough information to establish the stability behavior, The reason for this

is found in the property of nonlinear differential equations whereby their

response behavior can be a function of the initial disturbance, Therefore, one

stable case does not imply airplane stability for these nonlinear equations,
Here is where engineering experience and judgment play an important role,
For any problem there is an infinite number of combinations of different
magnitudes of initial disturbances, Setting physicelly realizable limits
(positive and negative) on the disturbances and choosing a "representative
set" within these limits is a job for the experienced stability and control

engineer, This representative set of disturbances can then be used to generate

a set of time histories.
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For the linearized, uncoupled, small perturbation equations of motion of
tables 4 and 6, only one arbitrary disturbance is required for each mode
(longitudinal or lateral direction), Linearity implies that the response
behavior is independent of the size or t; pe of disturbance in chxt mode,
However, time history generation for the linear small-perturbation equations

is not necessarily the most efficient approach to stability analysis,

The major advantage to using the time history (integration) approach is
that it is in terms of real time, The analyst can experience more of a
"physical feel"” for the problem, since he is observing motions similar to
those which the airplane would be experiencing in flight under the same condi-
tions. Most of the disadvantages of the time history method are not really
pertinent to the problem of stability behavio™ Instead, they are of an economic
nature, such as hardware and facility acquisition, upkeep, availability, man-
hour expenditures in programming, data preparation and reduction, etc. The
advantages and disadvantages involved in choosing an analog, a digital, or a
hybrid computer are not pertinent to the discussion and will not be considered
here. For detailed discussions of numerical integration techniques, see ref.

47, TFor an extensive discussion of analog computation methods, see ref, 51,

The next section deals with stability analysis techniques called "energy

decay methods,"

8.4 Dynamic Stability Criteria
Based on Energy Decay Methods
A relatively new and unknown area of stability analysis is the energy decay

method, This approach is discussed in refs, 23 and 24,

The fundamental idea behind energy decay methods is that energy E is
dissipated in dynamically stable systems., For linear differential equations
with constant coefficients, it is possible to show the inverse; that is, if energy
is being dissipated, the corresponding system is dynamically stable, Extension
of this idea to nonlinear equations of motion can be justified by applying the
Lyapunov stability theory of Sec, 9.



It is possible to formulate stability criteria based on this ideca of encrgy
dissipation, Two examples of such criteria are discussed below, The first

one deals with the lincar cquations of motion of the type used in par, 8.2, while

[}
the second deals with nonlinear equations of motion of the types used inpar, 8.3,

For equations of motion of the type of equation (8. 1), the approach can be

stated in the [ollowing steps:

a) Derive expressions for the total perturbed energy, E, of the aivplane.

b) From a) derive the AE required to make the airplane appear to be a
conservative system in the first half-cycle of oscillation, i.e. neutrally
stable.

The following dynamic stability criteria can now be formulated.

Criteria 8.4

If: a) AE >0, the airplane is stable.
b) AE = 0, the airplane is neutrally stable or not disturbed,
¢) AE < 0, the airplane is unstable,

A theoretical approach to applying these criteria is given in ref. 24,

Because of algebraic complexities, it is not considered practical to use
criteria 8,4 in cases involving nonlinear equations of motion, For nonlinear
equations of motion, Hakn (ref, 25) suggests an energy decay method based
on an idea by Lebedev. This idea is further developed by Roskam (ref, 23,
pp. 55-72). There, stability is connected with energy decay through the

parameter:

z
S Brat

Z2
=
.{ 2y

V4

where T is the perturbed kinetic energy, ty is the beginning of a time interval

during which the motion of the airplane is being studied, t3 is the end of that
time interval, and ty is the midpoint of that time interval, The criteria for

stability in this case would be as follows:

187



19y

Criteria 8,5
If: a) F < 1, the airplane is stable,
b) F =1, the airplane is neutrally stable,

¥

¢) F > 1, the airplane is unsiable,

It is shown in ref, 23 that F < 1, indicating stability, is satisfied in the case
of stable, linear small perturbation equations of motion, The advantage of
criterion 8,5 is that they apply to nonlinear equations of motion. A dis-
advantage is that considerable numerical work or a computer program is

required,

The potential application of energy decay stability criteria is believed to
be in the area of stability in limited time intervals. From the discussion at
the beginning of this sub-section it is seen that for linear and autonomous -
small perturbation equations of motion, stability according to the character-
istic equation method implies E < 0 and therefore AE > 0 and F < 1, The
condition E < 0 follows straightforwardly from Lyapunov's theorem 1 (See. 9)
by using the total perturbation energy E as the Lyapunov function. Because
of the analytical difficulties involved in treating the problem in general and
because of lack of time, this approach is left as a suggested area for future

research,

An area of stability analysis that is relatively unknown to airplane
stability and control engineers is based on Lyapunov's stability theory, This
is discussed in the par, 8.5.

8.5 Dynamic Stability Criteria
Based on Lyapunov's Method
In par, 8,3 the time history method was suggested as a way to determine

the stability behavior of the airplane when the equations of motion are non-
linear, However, with the time history method, it is necessary to solve the
equations of motion, I ,1punov has devised a stability theory for both linear
and nonlinear perturbeu differential equations of motion that obviates the
necessity to solve these equations.




Lyapunov's stability theory is an approach to determination of stability
behavior that has received little attention from airplane stability and control
engineers, For this reason, an introduction to this theory and some pertinent
definitions and theorems are given in Sec, 9. The potential applications of the
analysis techniques devised by Lyapunov and those who have followed his
approach are virtually unlimited, 7The reason for this is the generality of the
approach, Rather than solving any particular problem, I.vapunov realized that
the stability of dynamic systems (moving bodies, etc,) cct wi be approached by
studying the behavior of differential equations in general, iie derised two
classes of approach, one for equations whose solutions are known functions
of time and another for the equations of motion written in perturbation form.
The first approach (known solutions) ié similar to the stability eriterion for

time histories given in par, 8.3,

The second approach is called the "direct" or "second" method of Lyapunov,
This method, the essential details of which are discussed in Sec, 9 requires
choosing a "Lyapunov function' and relating its behavior to the behavior of the
differential equations of motion, A pariicularly attractive approach to the
problem of nonlinear airplane stability behavior using Lyapunov's direct
method derives from a theorem attributed to Zubov. Because of similarity,
it is felt that Zubov's theorem should appear as a logical extension of the
more familiar characteristic equation approach. In fact, as shown in Sec, 9,
it is possible to prove criterion 8.4a (stable roots for characteristic equations)
using Zubov's theorem for linear, autonomous equations, However, the

application of Zubov's theorem would be more useful for nonlinear equations,

It is shown in Sec, 6 that the large perturbation equations of motion of

an airplane can be written in the form:

(X} ) [F:<{X} ’ t):l {X} (8.10)

Nonlinear small perturbation equations, with nonlinear aerod:namic cross-
coupling terms, can also be written in this form, Before stating the stability

criterion for these nonlinear equations, the following definitions are required:
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u-'i{[F({xR}a tﬂ)]T + [F({XR},tRj] - A El]“ =0 (.11

will be called the "quasi-characteristic equation' where {XR} and t., are

defined as values belonging to a "representative set'" of X and t. RBy a
representative set, the following is meant: For given initial disturbances,
the soluticns to the equations of motion (8, 11) yield a time sequence of values
of thc motion variables {X}. In most practical cases the engineer will have
an idea of the practical limits of the perturbed motions that his airplane can
experience. In other words, the engineer can make a reasonable estimate of
the "cylindrical neighborhood" surrounding the time axis, within which the
motion takes place. Figure 16 illustrates such a cylindrical neighborhood
for a case with only two motion variables, The idea is readily extended to
cases involving more motion variables, Combinations of values of time

t and values of the motion variables in and inside this cylindrical neighbor~

hood are called a representative set,

Representative set of
motion variables on or
inside of cylinder

Time interval
considered, i.e.
representative
setof t

FIGURE 16. — ILLUSTRATION OF A REPRESENTATIVE SET OF TIME AND MOTION
VARIARLES
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In addition to limitations on the size of motion variables, theve is a limita-
tion to the time interval during which motion behavior is considered, It is shown
in Sec. 5 and in the summary report that there are definite limits on time
hecause of the assumption ot constant airplane mass, For exz?mple, it is shown
that the constant-mass assumption for the SST can become questionable for

time intervals beyond 150 seconds,

Choosing discrete values of {X} and t, called {XR} and tps Wwithin
practical limits reiated to the steady-state flight condition in accordance with
these ideas generates a ' representative set' of {X} and t. An analogy to
the represecntative set is the sclection of combinations of Mach numbers,
dynami~ pressures, angles of attack, and angles of sideslip for which wind
tunnel data are to be obtained or for which stability is to be assessed in the

usual analysis approach,

The eigenvalues A that will satisfy equation (8.11) are called the eigen-

‘values of the quasi-characteristic equation,

Using the above definitions, the application of Zubov's theorem as a

dynamic stability criterion is postulated as follows:

Criterion 8,6

If the eigenvalues of the quasi-characteristic equation are non-
positive (<0) for each {XR} and tp
{X} and t, the airplane is considered stable,

in a representative set of

As opposed to the other stability criteria presented in this section, this
criterion has no neutral or unstable counterparts, It is shown in 3ec, 9 that
this technique has its limitations and the existence of positive eigenvalues
does not necessarily imply instability. In fact, in a numzrical example, it is
shown in Sec, 9 that applying Zubov's theorem directly to a set of linear,
autonomous equations yields no conclusive information about the equations and
that applying the characteristic-equation approach shows conclusively that
the equations have stable behavior, In other words, criterion 8,6 is necessary

but not sufficient,

It is emphasized here and in Sec, 9 that using Zubov's theorem ag a basis
for determining stability has its limitations and disadvantages, Particularly

iniport.nt is the consideration that proving Zubov's thenrem recuires the use
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of a particular Lyapunov function, which may lead to very rough stability

analyses. This is further discussed in Sce, 9,

Another disadvantage of this approach is the loss of "physical feel" for
the problem until familiarity with and understanding of the direct method are
achieved, This is one aspect where the time history appioach has a distinct

advantage, because the engineer can "see" the predicted molions,

The question of when it is valid to use the linearized form of the equations

of motion is raised in ref, 23 and is also discussed in Sec, 9,

It is obvious that the application of Lyapunov stahility theory to airplanc

stability problems is an area where further research is needed,

8.6 Summary of Dynamic Stability Criteria T

Dynamic stability criteria were established covering the linear and non-
linear equations of motion of an airplane, These criteria apply to rigid,
equivalent elastic, and completely elastic descriptions of airplanes, provided
the corresponding equations of motion are written in the form required by
the criteria, Table 9 presents a summary of dynamic stability criteria and
their relations to the various forms of the equations of motion, The arrange-
ment of the equations of motion into the required forms is discussed in Sec, 9.
The combinations of eriteria and equations that are most commonly used in air-

plane stability analysis are identified with heavy lines in table 9,

The question of whether or not dynamic stability is required has not been
discussed in this chapter, The handling quality criteria of refs, 10, 11, 12,
and 44 requive dynamic stability of all short period oscillations, References
11 and 12 do not specify requ’rements for long period oscillations or for
divergences or convergences, References 10 and 12, however, do specify
maxiniim allowable times to double for such cases, It is the opinion of the
writers of this report that dynamic stability should certainly be reawred of
the airplane when considered as a controlled system, whether control is
exercised by the human pilot or by an automatic system, Whether or not
this means that the uncontrolled airplane should have dynamic stability and
to what extent is largely a matter of opinion and depends on such factors as

airplane mission, configuration, flight condition, and the reliability and
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capability attached to its controller, whether human or automatic. It is not

the purpose of this report to deal with this matter in any detail,

Becausc of the analytical complexities involved in the application of energy
decay criteria and Lyapunov criteria, no interpretations of the significance of
individual aerodynamic or inertial terms in relation to these criteria have
been presented. For time history criteria, such interpretations can only be
given after carrying out specific numerical integrations. Such interpretations

can be more easily given for criteria based on characteristic equation methods,

Paragraph 8, 6.1 suinmarizes the advantages, disadvantages, and limita-
tions of the various stability criteria established in this chapter. Avreas for

further research are suggested in par, 8.6.2,

8.6.1 Limitations, advantages, and disadvantages, -

8.6.1.1 Characteristic equations method: Applications of the character-
istic equations method are limited to linear differential eguations of motion,
This imposes a restriction because it is expected that significant nonlinearities
will be encountered in future designs., Examples of nonlinear cases were
pointed out in par. 8.1, However, when the equations of motion can be
linearized, the characteristic equations method represented by criterion 8.1
is a most efficient technique for determining airplane stability behavior. In
addition to determining the stability behavior, the roots of the characteristic
equations can be used for other analyses. For example, the frequency and
damping characteristics, imaginary and real parts of the roots, are used
extensively in handling qualities analyses and stability augmentation systems
design, References 4, 12 through 16, 36 and 49 are typical examples of such
cases,

The application of the characteristic equations method to the linear non-
autonomous equations was presented as a valid extension of this approach,
Routh's criterion, 8.2, permits a connection between static and dynamic

stability considerations, and this was discussed in par, 8.2.2,



8.6.1,2 Time history method: There are no conceptual restrictions to
the time history approach to any of the equations of motion, The only re-
strictions are those imposed by the assumptions used in derivi.ng the equations
to be considered. A particular advantage to this approach is that it presents
a physical picture of the motions involved. Another advantage is that it allows
a comparison of analytical and experimental data, Most of the disadvantages
of time history method are inherent in the computer itself (storage space,
etc.) or the integration techniques used.

8.6.1.3 Energy decay methods: Energy decay methods have not been
widely applied. As a resuli, the limitations, advantages, and disadvantages
have not been assessed, It is felt, however, that there should be few limita-
tions because of the general nature of the approach. For linear, autonomous,
small perturbaticn equations of motion, this approach will probably prove
less efficient than the characieristic equations method, However, it may lead
to a better insight into the effect of certzin stability derivatives cn stability
behavior,

8.6.1.,4 Lyapunov stability method: The particular method presented
here (Zubov's theorem) has no resirictions with regard to the types of per-
turbed equations to which it can be applied, However, the criterion only
pertains to dynam:r stvhility, and there are no neutral or unstable counter-
parts. Also, it will rot aivays predict stability for stable airplanes, Here
again, this approach has not been sufficiently explored to truly assess its

value,

8.€.2 Suggested areas for further research. --

8.6.2.1 Characteristic equations: A mathematical proof «f ariterion
8.1d is required, Whether it is proved or disproved, the work involved
should result in more insight into the dynamics of airplanes requiring non-
autonomous mathematical medes,

8.6.2.2 Time histories: The research aspects for time histories are
involved in computer sophistication and are not pertinent to this discussion,
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8.6.2.3 Energy decay: Further investigation in this area is required,
The main objective would be to develop the necessary energy expressions
and apply the criteria to practical cases, It is worthwhile to note that the
"first half-cycle'™ may not be a sufficient time intervsal for stal.)ility deter-
mination using criterion 8.4, This may require validation using the dirvect
method of Lyapunov for limited time intervals (rvef, 25),

The separation into easily identifiable modes of motion (phugoid, Dutch
roll, etc.) is a property of the linear small perturbation equations of motion,
For noulinear equations, such a separation does not occur., Because non-—
linear behavior is expected to be dominant for future designs, the question
of how to specify dynamic stability requirements must be faced. It was
suggested in par, 8,4 that the energy decay parameter ¥ be considered as
one way of specifying dynamic stability r. y icements for situations involving
nonlinear behavior, A cousiderable amount of research is needed before
this can be done,

8.6,2.4 Lyapunov stakility, Zubov's theorem: Owing to the "roughness"
of Zubov's theorem, as discussed in Sec, 9, and because of its similarity to
the characteristic equation approach, some refinement of this approach may
lead to more efficient stability assessment for nonlinear and/or nonautonomous
equations than the time history approach currently offers. Whether or not this

refinement can be accomplished requires additional study.
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9. LYAPUNOV STABILITY

9.1 Introduction

The purpose of this section is to explain the second or direct method of
Lyapunov. This method and its derivatives allow the determination of the
stability behavior of nonlinear and nonautonomous ordinary differential equations
o1 perturbed motion without solving these equations. It will be shown that when
applied to ordinary, linear, autonomous differential equations of perturbed motion,
the direct method of Lyapunov yields the same results as the familiar character-
istic equation method described in par. 8.2. In that sense, the characteristic
equation method is essentially a special case of the direct method of Lyapunov.

A dynamic stability criterion for nonlinear airplane equations of motion is
developed on the basis of Zubov's theorem. This criterion has practical
significance since it allows the establishment of stability when the equations of
motion have a general form — namely, the large perturbation form. However,
as will be shown later, stability obtained in this manner has its limitations. In
addition, a method is presented by which it is possible to determine the condi-
tions under which the linear small perturbation equations of motion give the
correct answer of stability.

An appreciation of thc scope and potential of the direct method of Lyapunov
in solving problems of stability determination can be gained from reading one
or more of refs. 25, 52, 53 and 54. An example of the potential of the method
is shown in Hahn's book, "Theory and Application of Lyapunov's Direct Method"
(ref. 25), where more than 20 different kinds of stability and instability are
discussed. References 25 and 54 combined contain more than 30 pages of

bibliography and references, an indication of the scope involved.

Before stating the two main theorems of the direct method of Lyapunov, it
is necessary to define the mathematical meaning of stability used in conjunction
with the method. Reference 25 gives the definitions for stability (stability of
the equilibrium) of the perturbed equations of motion as follows:

The perturbed equations of motion may be written in the general form

(3 ={r (3.4} 0.5
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where {R( {}\} , t)} is a column matrix of functional relationships between the
motion variables xj and, if the equations are nonautonomous, t. It can be
demonstrated that this form can be obtained for the equations of motion con-
sidered herein. Setting {6} = {0} and carryin_ out the matrix multiplication
[F({x}, t)] {x} results in: )

{2} = [F(L1,9]{2} = {R(b3,0)}

The parficular solutions for a set of initial disturbances, {xo} , introduced
at t,, are given by:

{x} = {P(t, {%o},to)} ©.2)

The equilibrium is the state before initial disturbance, given by:

{Pl<t,, {x};t)} = _{0} (0. 3)

9.2 Definitions of Stability According to Lyapunov

By Lyapunov's definitions, the equilibrium is:
a) Stable if there exists an €>0 anda & > 0 such that:

{x31< 3

implies

' {P (t, {Xo},to)}] < € (9. 5)

The significance of a) is that for small enough initial disturbances,
{%o}, the motion {x} = {P} remains close to the equilibrium

(undisturbed motion), i.e. the sclutions (motions) are not divergent.

b) Quasi-asyritotically stable if there exists a 6, > 0 such that when:

l{YO}‘ < So ©.6)

then:

't}:glo 1P, {x) 9t0)}= {o} ©-7
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The significance of b) is that fur small enough initial disturbances
{xo} and no additional disturbances for t > t, the perturbation
variables eventually return to zero (condition for t <,t)), which is

exactly the original equilibrium.

c) Asymptotically stable if it is both stable and quasi-asymptotically
stable.

It follows that for a), a new equilibrium may be achieved or a condition of
neutral stability, in the usual sense, may exist. Conditions for unstable
equilibrium as well as some enlighiening remarks concerning both stability and

instability may be found in refs, 25, 52, and 53.

It is observed that satisfying b), and hence ¢), with respect to the limiting
process (t-=«) can only be done in the analytical sense, i.e. if the solutions
are expressed as explicit functions of time. Also, in order that physically
realizable limits are not violated, it may be unrealistic to apply this limit even
in the analytical sense. When it is necessary to use numerical integration
techniques to solve the equations, it is obviously not possibie to satisfy b).

Thus it may be deduced that only the most ideal problems can be treated in this
manner and that most real, physical problems require the use of a more
sophisticated approach — for example, "stability in a finite (time) intervai. ™
(Reference 25 presents a discussion of this approach.) For practical purposes
of stability behavior determination, if an airplane appears to behave in a finite
time interval in such a manner that equation (9. 7) would be satisfied if ¢t —«),
it may be considered to have asymptc;tic stability, This is, of course, a iberty
being applied without mathematical proof.

Lyapunov has derived a technique that does not require knowledge of the
solution or its behavior for t—=« . This technique, known as the "direct
method, " is discussed in par. 9. 3.

9.3 The Direct Method of Lyapunov

Lyapunov studied the relationship between an arbitrary function and the
differential equation of perturbed motion (equation 9. 1), and deduced the
following stability criteria (theorems).
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Theorem 1
{x} = {R{x}, t} has a stable equilibrium if there exists a positive
definite function V = V ({x}, t} whose total derivative ,

dV oV oV o 9V oV v
e O I Al I L )

for the differential equation is nonpositive.

Theorem 2
{x} = {R({x}, )} has an asymptotically stable equilibrium if, in

addition to theorem 1,
Lin m {P(t,{x},t) }.‘:‘.{O}

forallt >t  and dV/dt is negative definite.

Proofs of these theorems may be found in ref. 25. However, further
clarification of the theorems is important for a better understanding of the

direct method. Fur that reason, the following interpretation is presented.

The total derivative of V is given by:

dVv oV - v ax;

dt " ot T2 ax It ©. 9
since bxl/at;—_ X,
: dV _ oV S oV .9
at - ot *‘Z ax X 69
or
dv _ 3V OV py -
Tl aXa} {x} (9.10)

As already defined in equation (9. 1), and in the theorems above,

{x} ={r({x}, &)}
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therefore:

dv _ Vv VT
T 5t :97:} {R({X},t)} ©. 11)

This establishes the relationship tetween V and the equations of motion, Now
consider asymptotic stability for a two-dimensional problem, Regardless of the
behavior of .

-G

. Pz(-t7 {Xo} ;té)

and because of theorem 2, the geometric relation shown in fig, 17 holds
between V and {x}.

+V

+Xo

FIGURE 17. - GEMETRIC RELATIONSHIP BETWEEN THE LYAPUNOV FUNCTION V AND THE
MOTION VARIABLES X AND X
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In fig. 17, the curves C1 and C2 are the projections of V({P}, t) on
the (V, -x;) planes. This makes sense because V > 0 for all {x}, t), since
it is positive definite. Furthermore, theorem 2 implies that:

a) If X; < 0 and increasing, then: V— 0
i=1,2

b) If X; > 0 and decreasing, then: V-0

due 1o |{x}| — 0. This gives the following relations (from fig. 17):

V
oV :
vy < O (xy < O) (9. 13)

Returning to the general case, where i = 1, 2, ..., 1, consider the

isolated sifuation where:

Pt 9
for .11 i except k, Then, for dV/dt < 0, from equation (2, 10):
dV IV ¢
—_—= = Xk < O (9.14)
dt 9 Xy k

I x; >0, then from inequality (9.12) 9 V/oxy > O,
If 9V/9x, > 0, then X < 0 to satisfy inequality (9. 14).

Therefore, the relationship:

>'<k < o (xk >_~0) (9.15)

holds and automatically implies that X = Pk (t, {x,} to) is converging toward
x. = 0, ’.‘k = 0, A similar argument for inequality (9. 13) yields a similar
conclusion (stationary or convergent) for x) < 0:

Xy, > 0 (%, < 0) (9. 16)

Since theorem 2 requires dV/dt to be negative definite, X is converging
toward zero, Thus the motion is raturning fo the equilibrium Xy 1 because

X -~ 0 implies that X = xkl + Xp approaches Xkl'



This approach may be extended to the case av/ot = 0, <'9V/3xi # 0 for any i.
Since relations (9. 12) and (9. 13) hold for all i, assume that in

2V e
53

4

not all (3V/9x;) k; are negative, but dV/dt< 0. For (8V/9xi)k; > 0, either
(1) 8V/ox;, %<0 or (2) 8V/ xj, %; > 0, Consider (1) as depicted in
fig. 18.  Let x; be positive and diverging and V < 0 and observe V = V

(xj ), t).

The projections of V(xi(t), t) onto the (V, x), (V, t), and (x;, t) planes
give the curves V(x;), V(), and x(t), respectively. It is chvious that for
dV/ax; > 0 (case (1)) and 8V/dt < 0, X; > 0, so case (1) is not acceptable;
that is, the projected curve x';(t) for x'; < 0 would not intersect V(x;(t), t).

A similar discussion of case (2) would lead to its elimination also. Therefore,
all terms 8V/9x; X; must satisfy:

SL ki <0 (i=h2,n) (0.17)
and further must satisfy one or the other of inequalities (9. 15), (9. 16). Similar
arguments and rationalizations can be used to consider all the possible
variations of dV/dt and theorems 1 and 2. The major point to be established
is the relationship of dV/dt to the differential equations of motion, as in
equation (9. 11), and the resulting implications, namely inequalities (9. 15) and
(9. 16). Theorems on instability and more elaborate discussions concerning
phase space (n dimensions) may be found in refs, 25, 52, and 53.

9.4 Connection of the Direct Method With
the Characteristic Equation Method

9.4.1 Derivation of Criterion. - Lyapunov functions are rather arbitrary,

as mentioned previously, but there are some convenient forms that are easier
to work with than others. Because of their definiteness properties, quadratic
forms are particularly convenient., For example, the familiar characteristic
equation method can be proven using the direct method of Lyapunov with the

Lyapunov function:
V=< {x}T(x] (9. 18)
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FIGURE 18. — GEOMETRIC RELATION BETWEEN V, x; AND
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The familiar rigid-airplane, autonomous, linear, small perturbation equations

{x}=[Al{+}

where IAl = [A iil = constant n xn mabrix. The usual procedure in

of motion may be written:

)

(. 19)

solving these equations is to take the Laplace transform of (9. 19), giving:

SX(S)— X (t-)=[ A] K (5) ©-20

This reduces to:

[sT1l-[/ ]] {‘9[(5)} = { pd ﬁo}} ©. 21)

the solution of which is:

{95(5)} :’[S[ 1]- [ A]]bi{?( (T'Zo)} ©.22)

The denominator of the right-hand side of equation (9. 22) is the characteristic

“ [sd - [a] “ ©. 23)
The roots §; are found by solving the nth—degree polynomial in s:
| ts3 - [A]

From dynamic stability criterion 8. 1 of Sec. 8, it is aiready known that if

form:

=0 ©. 24

the real parts o; of the roots §; = 0 + jw; are negative, the airplane is
called stable. The reason for this statement of stability is that solutions to
equation (9. 22) can be written in the familiar form:

Ms

y A -
=

i C‘J eloc+iwt

.
u

1
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Now counsider the direct method of Lyapunov, using Lyapunov function (9. 18). It
is a positive definite quadratic form. The total derivative of V is given by:

4= L L) = L P E 0Ty O

From equation (9. 19):

{07 =" [A]" 9. 26)

Substituting equations (9. 19) and (9. 26) into equation (9. 25) yields:

o

Nl [N S] e.2n

&= L[0T 1

(9. 289)

Equation (9. 28) is a real symmetric quadratic form and has definiteness

properties determined by the eigenvalues of:

[ [4] 0.9

Let the necessarily real eigenvalues A of expression (9. 29) be determined by

solving the determinant:

%[[A]T+ [A]] _ AE';‘“ = 0 (9. 30)

The eigenvalues A, of [A] have real parts Re(A A) such that:

Aminn. < Re(Aa) = Ao ©. 31)



which can be concluded from vef, 25, page 37.

From theorem 1, equation (9. 19) will have a stable equilibrium if av/dt
(equation (9.28) is negative (nonpositive), Since the right-hand side of equation
(9. 28) is a quadratic form, then for stability the eigenvalues A must satisfy:

A =< O (. 32)

However, to rule out neutral stability, it is necessary to assume asymptotic
stability. From equation (9. 18), it is obvious that

T V({x},t) = 0

and if, instead of expression (9. 32), the inequality

o~

A< O (9. 33)

is satisfied, then theorem 2 will be satisfied. Using inequality (9. 33),
inequalities (9. 31) may be rewritten:

Aﬂ'll"i. 5 R e { AA) S A moax. < O (9. 34)

From this it immediately follows that:

Re (A, <0 (9. 35)

This corresponds exactly to the stability criterion .f characteristic equations
as expressed by 8.1. This demonstrates that the characteristic equation

method is a consequence of the more general direct method of Lyapunov.

For more complex problems than those repres.nted by the conventional
equations (9.19), the application of the direct meth-d becomes very complicated
and the matrix manipulations unwieldy. Consider as an example the case where
the perturbed equations of motion are nonautonomous but linear:

{x} =[~(] {9} ©.30

A Lyapunov function that allows a statement of a sufficient condition for

V=9 (t) xy7 [B U?):E{‘A’} ©. 37)

stability is.
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as shown in ref, 25. A quick asscssment of the complicated form dV/dt will
assume should show that a more practical (even though perhaps less accurate)
approach is desirable.

e
e
One choice that has proven fruitful is a Lyapunov function representing
energy. For example, if the motion velocilies are given by {z}, a Lyapunov
function equal to the kinetic energy will be:

v =2 (zy [mMI{z) 035

where [M] is the diagonal matrix of inertial characteristies. Another example
is the total energy:

V= é— {z} [mJ{z} +/g(w)dw (9. 39)

[‘g (w) dw

represents the potential energy.

where

In the general case of equation (9. 36), however, this can be as difficult

to deal with as solving the equations of motion by numerical integration.

The choice of Lyapunov functions is unlimited. For a particular Lyapunov
function it will usually be found that for disturbances within some bound, say
{xo H £ by, stability will be guaranteed and for some hy > hy, if [{x,}|2 hy,
instability may be guaranteed. If hy—c, there is no instability, i.e. the

equilibrium is stable for all disturbances and hy does not exist. On the other

_hand, if h2 —0, there is no hj and the equilibrium is unstable for all dis-

turbances, no matter how small, This is because h; and hy are always
positive and hy cannot be less than hy. If h; and hy are equal, then hy
(or hyp) is a boundary of initial disturbances between stability and instability,
i.e. a "stability houndary." However, in general, h; = hy, and for

hy; < {xo}l < hy neither stability nor instability can be deduced. Choosing a
different Lyapunov function can shift h1 and hy , providing hj = hz. This



does not change the stability behavior, but it is possible that the size of the
"gray" area h; < I{xo}{ < hy can be reduced. If several Lyapunov functions
are tried, the greatest h; and the least hy define upper and,lower bounds for
stahility and instability respectively. Thus it is observed that there should be
a "best" Lyapunov function which will give the most accurate values of hy and
hg. However, it may be impossible or at least impractical to try finding a
"pest" Lyapunov function which gives the most accurate stability boundary.

The definition of an approximate stability boundary is better than no boundary
at all, so with a view toward practicality, a straightforward approach using a
theorem attributed to Zubov is now presented.

The equations of motion for an elastic (or rigid) airplane may be written

in the general matrix form:

(x} = [F100) .0

where [F] may be any form factorable from {R({x}, t)} of equation (9. 1).
Zubov, according to Hahn in ref. 25, proved the following theorem for

[F1 = [F({x}, v}

Theorem 3
The equilibrium of equation (9. 40) is stable if all eigenvalues (depending
on {x} and t) of the matrix

3 [ 717+ 7]

are nonpositive in a certain domain Ry, t,; that is, if the roots A of

the equation

“ 3 [[F]T"’ [F]] - ZE‘J“ =0  (9.41)

satisfy the following conditions:

i=1,2,""",n
t?-‘. to,l{X}léh

<L O (9. 42)
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This theorem can be proven using the Lyapunov function V =1/2 {x}T {x},
in 2 manner similar to the one used in showing equivalence of Lyapunov's
direct mcthod and the characteristic cquation method, Fortuq__ately, most
airplanes have practical limits for admissible X values. * This allows

determination of an h where:

n
h 22 (Ximer) (9. 43)
gy

Also, it is not possible to test all {x} and t satisfying |{x}]<h
and t > to, since there exists an infinite number of each. However, a
representative set** of {x} and t can be substituted into [F] and the

eigenvalues A; found for the specific values of {x} and t.

Stability as determined by Zubov's theorem requires A; < 0 as a criterion.
For convenience, equation (9. 41) will be called the quasi-characteristic
equation when {xgp} and tp are chosen from a representative set of {x}
and t and substituted into the equation. Thus the quasi-characteristic

equetion is:

| Fd ] [Floxd e |- Al =0 o

where:
{h}e {x}; |0} = h 22(&“!)2 tr = £,

"With this definition and on the basis of theorem 3, the following dynamic

stability criterion will be defined for equations of the type of (9. 40).

*Already discussed in par, 8.5.
*¥*¥A discussion of what is meant hy "representative set' is given in par. 8.5,



Dynamic Stability Criterion

An airplane whose equations of motion are given by 4
{3 = [ 1{x}

will be called stable if the roots of the quasi~characteristic equation
(9. 44) are all negative (nonpositive) for a representative set of the

variables in Ry, t,.

Stability Boundary

An approximate stability boundary for an airplane whose equations of

motion are given by

{3 =[F1{x}

will be those values of {xo} for which at least one of the roots of

the quasi-characteristic equation vanishes and for which values

¥R} > H{ZoH yield one or more positive roots.

It is believed that this criterion, once properly computerized, could be a
significant breakthrough in the analysis of airplane stability in nonlinear and/or
nonautonomous situations. There are some limitations, however, and these are

discussed next.

9.4, 2 Limitations, ~ In using thbov's theorem 3, it is recognized that
using a particular Lyapunov function (V = 1/2 {x}T {x}) does not necessarily
give a "best" stability boundary. In fact, the existence of positive eigenvalues
" of the quasi-characteristic equation does not necessarily imply instability.

This is a serious limitation that must be recognized when applying Zubov's
theorem. A simple example will illustrate it, For a very simple form of
perturbed equations of motion (linear and autonomous), assume the following:

).k' = [1; _;] (;‘} = [A] {x} 9. 45)

X \
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Using [A] from equation (9. 45):
| T -1 -3
- [[A] +[A] = {;3 “3} . (9. 46)

and the eigenvalues are given by the roots A of:

1SS

Expanding equation (9. 45), the following is obtained:

= 0 (9. 47)

A*+ 42 +3-9 =0

which may be factored into

(x+2-Jio)(Aarz+iio) =0

('“"xg giving the roots:
.A‘ = -+ |, |G
)\?_ = —5.l6

(9. 48)

Therefore, Zubov's theorem is not satisfied because of 7\1 >0,

Now consider the characteristic equation approach, As shown previously,

the following determines the stability:

|5e) - Baff=

This reduces to:

S+ -
7 S+3
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and further to:

i

$* +4S +3+7 =0

«®

This may be factored into
(s+2-j¥e)(s+a+jJc) =0

giving the roots:

Si,2 = -2 + j{e @.51)

These indicate a stable solution.

o~

9.4.3 Conclusions, - If the equations of motion of an airplanc sutisfy
Zubov's theorem, stability is guaranteed. However, the simple example above
shows that positive eigenvalues do not necessarily imply instability and, in fact,
a stable system was shown to violate the condition of Zubov's theorem. Recause
of the "roughness" of this approach, a more accurate approach may be required.
Research into this area seems to be needed.

9.5 Stability According to the First Approximation*

The development up to here has shown how Lyapunov stability theory
applies to nonlinear and/or nonautonomous equations of motion, What is yet to
be cleared up is the question of what conditions must exist for the linearized
equations to be used as an approximation to the nonlinear equations, This
question has two aspects: respoase and stability. It is entirely possible that
linearized equations yield the correct answer with regard to the stability of an

a,irplane but yield unacceptable approximations to the response behavior.

The answer to the question of response behavior can be obtained through
generation and judgment of response time histories, Without the benefit of such
time histories in a particular situation, engineering judgment plays the dominant
role. Reference 23 formulates such conditions that must be met by the

linearized equations to adequately predict airplane response.

*That is, according to the linearized equations



( The answer to the question of stability can be obtained by using the direct
method of Lyapunov, as will be discussed in the remainder of this section.

Consider the large-perturbation equations of motion in the form:

{1} ={r (13,80} =[Al] () + {((), 1))

(9.52)

where {K( {x}, t)} is a column matrix of higher order terms; i.e., it contains
products of motion variables, etc. This can be demonstrated for the large
perturbation equations of motion.

Setting {6} = {0} nd all x; = 0 in [F({x}, t)], then using sgn(x;) = 0;

65 = 0
(R0 )], = [A00]
Fusther:
(! {K({x},t)} =[[_F({;X}, t)] - [A(t)]] ()

{x} RN +{K({X})} (9.53)

In the following it is implied that the nonlinear terms {K({x}, t)} are
"sufficiently" small, The meaning of "sufficient" has not been clearly
established, The following theorem can be proven:
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Theorem 4 (theorem 26, 2 in ref, 25)

If the motions of the linearized differential equation giventbelow have
intensive behavior*, then the complete and the linearized differential
equations have the same stability behavior where;

a) The complete equativa is given by equation (9.52) or (9. 53).

b) The reduced (linearized) equation is given by:

{3} = [ale)] () .54

c¢) For the autonomous case, the reduced equation becomes:

{3} = [A]{0)

(9. 55)

Equations (9.54) and (9. 55) are called "first approximations, "

Note that there are two conditions to be satisfied here:
a) The nonlinear terms must be sufficiently small.

b) The behavior of the first approximation must be exponentially stable
or unstable,

Also observe that both are necessary conditions. Condition b) can be
relatively easy to satisfy in the autonomous case. The follov g discussion
of items a) and b) for the autonomoas case has been extracted from ref, 23,

par. 2.3, pp. 15-19, with appropriate changes to fit the discussion here.
9.6 The Validity of Linear Small Perturbation Equations
of Motion in Predicting Stability Behavior

‘For sufficiently small perturbations the linear approximation theorem of
Lyapunov (theorem 4, herein) is applicable. TFor such sufficiently small

disturbances, this theorem merely restates the well-known fact that the stability
characteristics of the uncontrolled airplane can be obtained from the roots of

the characteristic equation of the linear approximation to the equations of

*Intensive behavior means that every motion admits, along af least one of its
branches, exponential stability or instability for all {%o} or t>t,. See
ref, 25 for further discussion of intensive bebavior,
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motion. In other words, if all the roots of equation (9. 55) have negative real
parts, the airplane is stable. If one the roots has a positive real part, the
airplane is called unstable. If one of the roots is zero, the set of equations is
critical according to Tyapunov* and the ctability characteristics must be
obtained from the nonlinear cquations.

It was stated above that the theorem cof linear approximation is valid for
sufficiently small perturbations. It is intuitively acceptable that for infinitesi-
mally small disturhances (initial conditions leading to a motion deviating sligl tly
from the flight considered) a linear approximation will yield correct results.
This knowledge is of little value to the airplane designer, since stability must
be ensured in an environment of finite (and sometimes quite large) disturbances.
The problem is therefore to define a domain of initial disturbances within which
the small-disturbance theory will correctly predict the stability behavior of the
airplane,

Texts on airplane stability and control, such as refs. 13 through 16, either
fail to bring this problem up or to solve it in a useful manner. This is surpris-
ing because the key to its solution can be found in applying Lyapunov's direct

method. The following development will elarify this point.

For the linear, autonomous equations of motion (equation 9.55) it is
always possible to construct a Lyapunov function V (ref. 53, p. 57). Construc-
tion of this function V canbe carried out as follows. Assume:

V=g Buixx = 3O [B]{)
& (6] - [&]

If V isto be a Lyapunov function for the linear part of equation (9. 53), it must
satisfy:

\ AV
dv. _ 9V .

——e
—

N . e _
dt 2%; "t %, (Ba X © ¥+ 3 Xn)=C
(A

*For further discussion of the meaning of ¢r''i - hoevior, see ref. 25,



where C is any negative definite form. It is convenient to select:

cC= -—(X.?'+---+an) (9. 58)

The coefficients a; are the elements of [A] in equation (9.55). It turns
out that [B] will be po‘?sitive definite if and only if the eigenvalues of [A] have
negative real parts. A unique solution for [Bl can always be found (ref, 53,

p. 57).

The function V obtained in this mamner is a Lyapunov function for the
linear equations. It is also a Lyapunov function for the nonlinear equations in
some small neighborhood of the origin {x(0)} = {6} if it satisfies theorem 1
in the sense that for the complete equation (9.53):

dVv v
_— = — X: = O 9.59
dt 4 o X; ©.59)

It is emphasized that even though V has been derived for the linear

equations, x; in inequality (9.59) must be compuied for the nonlinear set.

i
Thus, in (9.59):

{%} = (R {x} + (0]

By checking inequality (9. 59) systematically for combinations of values of
initial disturbances, a domain of initial disturbances is found within which the

linear approximation is valid,

~ The domain of small disturbances found in this manner guarantees the
validity of small-disturbance theory for disturbances inside the domain.

"Outsidz the domain there still exists a possibility that small-disturbance
theory applies. Because this method of constructing the domain will at least
verify whether or not the domain is large enough to be practical, this last fact
is not considered a serious disadvantage. Chetayev and Malkin have discussed
the problem of enlarging the domain of initial disturbances in ref, 52 and in
ref. 53 (pp. 71-73) respectively.
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A useful observation is the following. It is possible to include in the
nonlinear part {K({x})} of equation (9.52) expressions representing non-
linearities in the aerodynamic forces and moments. In this manner the
effect of aerodynamic nonlinearities on the size of the domain of initial dis-

turbances can be determined,

Having computed the domain of validity of the linear approximation,
attention can be focused on methods to determine the stability behavior, It
is assumed that the domain so found has a practical size, meaning that it is
not infinitesimal in nature.

An additional possibility is observed in the following: If in equation
(9.56) [B] = [1] is arbitrarily chesen, and if at the same time {K ({x})} is
factorable into [K" ({x})] {x}, equation (9.53) can be written:

{5} =[a1+ (0] ] ) 0.0

{X} = [F ({X})] {x} (9.61)

or:

Since, row,

i T
V= 2 {X} {X} (9. 62)

it is observed that Zubov's theorem (theorem 3), is a consequence of the
previous discussion. MNote also that although Zubov's theorem may yield less
accurate answers, it eliminates the need to solve for [B].

If the nonautonomous case is treated, the approach is the same, but [B(t)],

and sometimes an arbitrary positive function ¢(t), is required as indicated

in equation (9, 35):

v= o) {x}T [B(t)] {x}



I [B®)] =[1] and ¢(f) = 1 are chesen arbitrarily, then the most general case
of Zubov's theorem,

v+ [[F({X}, t)] + [F({x}, t)]fl{x}

follows immediately., FHere again the need to solve for [B] = [B(t)] is elimi-
natec along with choosing ¢(t).

It should be evidint that even in the limited presentation given here there
are apparent practical aj olications of Lyapunov stability theory in airplane
stability analysis. More research in this area may uncover even more prac-

tical applications or befier ways to approach current problems,
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10, CONCLUSIONS AND RECOMMENDATIONS

A careful derivation of the equations of motion for an elasfic airplane has
L]
been presented in Secs. 4, 5, and 6, The aerodynamic and structural operators

needed to solve the equations of motion are discussed in See, 6 and in app, B.

The development of equations of motion for the completely elastic air-
planc relies on the influence cocfficient concept for both structural and
aerodynamic representations, The advantage of this concept is that, in
itself, it does not require a commitment to any particular aerodynamic or
structural model except that superposition must be valid, This restricts the
aerodynamic theory (whatever it may be) to small angles of incidence, and
restricts the structural theory (whatever it may be) to small strain and dis-

placement and Hooke's law,

Several assumptions made in the derivation have important consequences
with regard to the restrictions imposed on the analysis., By carrying out
additional research it would be possible to remove several assumptions from
the analysis. The most restrictive assumptions are listed below, together

with recommendations for additional research,

Constant mass and mass distribution. — It was stated that this assumption

implies that no fuel slosh is accounted for, This assumption can be removed
realistically only by assuming a model for the fuel tanks, the baffling arrange-
ment, ete,, and then including equations accounting for the dynamic behavior
of the fuel and its effect on the entire airplane, This has not been done in this

report and would require additional research,

Small strains and displacements, — For elastic airplanes with very long,

slender bodies or wings, it is possible that the linear force-deflection relation
is violated, If this is ever felt to be important, a careful investigation must
be made of the static and dynamic structural representations used in this

report, This will require additional theoretical and experimental research,

Aerodynamic influence coefficients for zero sideslip, — An important

consecuence of the restriction to zero sideslip of aerodynamic influence co-
efficient theory is that at present no matrix expressions can he generated for
sideslip forces and moments on total airplane configurations, The restriction
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to zero sideslip in aerodynamic influence coefficient theory also makes it
impossible to develop matrix equations describing the steady-state equilibrium
of elastic airplanes under sideslip conditions, To remove this restriction will
require additional theoretical and experimental research, Another important
limitation of aerodynamic influence coefficient theory is that it is valid only

for small angles of incidence.

The static and dynamic stability criteria have been derived for an elastic
airplane. It has been shown that the basic form of these criteria is the same

for rigid, equivalent elastic, and completely elastic airplanes,

Static and dynamic stability criteria have been summarized in tables 8
and 9 respectively.

Physical interpretations have been presented for those derivatives that
appear in the stability criteria. Where practical, the stahility criteria have
been related to known flight experience. Also, the relationship between
stability parameters, stability criteria, and handling qualities has been
discussed,

Specific conclusions that were reached can be summarized as follows:
a) The mathematical formulation of stability criferia is the same for the
rigid, equivalent elastic, and completely elastic airplanes.
b) . Static longitudinal stability is, in general, a prerequisite for dynamic
longitudinal stability.

c) Static stability is not necessarily required for good handling qualities,

The following areas are recommended for additional research:

a) ' A study should be made of the effect of airplane elasticity on the behavior
.of phugoid and short period with all speed derivatives properly accounted
for,

b) It will be necessary to develop a capability for calculating time histories,
including elastic degrees of freedom and unsteady aerodynamic effects.

¢) The energy deéay method for judging stability behavior and its rel.tion
to flying qualities needs to be further explored,
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d) More rescarch is needed o establish the practical application of Lyapunov
theory to airplane stability analysis,

€) Further research is needed before a generally acceptable.procedure,f ‘can
be defined with which a decision can be made as to the mi;ﬁmum number
of elastic degrees of freedom that are needed in stability and response
studies,

fy A discrepancy was found with regard to the interpretation of Routh's test
functions, Reference 49 was found to disagree with ref, 48, This dis-
crepancy has not been further investigated,

g) Not considered under the scope of this contract is the case of stability
under continuously acting disturbances (for example, gust). Itis felt
that a thorough understanding of this type of stability is essential in
studying the upset and recovery behavior of airplanes, It is highly
recommended that study of this type of stability be initiated,

h) This report does not deal with controlled airplanes, Research is needed
to establish the stability criteria (qualitative and quantitative) for an

" elastic airp! - 2 when controlled by an automatic system.

It has been shown that the conventional notion of associating static longi-
tudinal stability Cm with stability of the flight path is generally correct only

o
if the speed derivatives CL , and Cm can be neglected. In addition, it has
u u
been shown that this holds true for steady climbs and dives provided dynamic

pressure remains reasonably constant, The additional assumption that the
thrust derivatives be negligible is also required. Whether or not this assump-
tion is justified depends on many factors, particularly on the location of the

engines,

Directional stability C, has been shown to affect stability of the flight
path (spiral stability), Positive Cn actually hurts spiral stability, It has
been shown that positive dihedral effect C PR 0 is necessary for the spiral
mode to be stable, but it was reasoned that some degree of spiral instability
must be tolerated in view of the detrimental effect of C [B on Dutch roll,

For the completely elastic airplane, it is concluded that a numerical
evaluation is needed to determine the effect of normal modes on stability of
the flight path,
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